
1 September 1994

Modular handling of
TMOS systems

 Modulär hantering av
TMOS system

Henrik Hansson
Olav Queseth

Modular handling of TMOS systems 3 of 68

 Abstract

This document will discuss how handling of TMOS may be simplified. The
method discussed is to divide TMOS into modules. Since the size of the modules
and the relations between them are important, a method for dividing TMOS into
independent modules is proposed and discussed. A method of describing depend-
encies is also presented. This method allows a system to be resized and reconfig-
ured when new modules are added. The method is intended to describe
dependencies to mutual resources in the platform, but it can also handle depend-
encies to resources in other modules. All dependencies and engineering data are
to be described in a ‘module description document’ that will replace the existing
engineering data document. With this new document it is possible to detect prob-
lems when two or more modules need to share a resource. It also allows the new
module to be tested in an optimal way. Since modular handling can be compli-
cated, additional methods for simplification are introduced, e.g. installation pro-
cedures, a new AL concept and a preconfigured platform.

4 of 68 Modular handling of TMOS systems

 Contents

1 Preface 6
Acknowledgements 6

2 Introduction 7

3 TMOS in a nutshell 8

4 The structure of TMOS documents and programs 9

5 Current system 11

6 Problems with using AL 12

7 Advantages of using AL 13

8 Introduction to solution 14
Dividing the system into modules 15
All dependencies are described using resources 15
An AL-like concept is introduced to simplify handling 16

9 Modules 17
Atomic objects 17
Different ways of creating modules 19
Comparison of the various approaches 22
Creating modules 23

10 Advantages of modular thinking 28
Simplified engineering 28
Simplified handling 28
Simplified testing 29

11 Problems with modular thinking 30

12 Describing dependencies 32
What is a resource? 32
Size of resources 33
Which resources shall be described? 33
Where shall resources be described? 34
A model for describing resources 35
Pros and cons with describing resources 36

Modular handling of TMOS systems 5 of 68

13 Additional simplification 39
Predefined platform 39
Ready-made calculations 41
Preconfigured modules 42
Resource server 42

14 Demands and restrictions when using modules 43
Modules 43
Options 44
Platform 45
Installation 45
Documentation 45

15 Comparison of modules and AL 47
Adding functionality to an existing system 47
Scaling of systems 47
Configurability 47
Installation 48

16 A module description document 49
How to use the document 49

17 How to write a module description document 53
Short description 53
Table of dependencies 53
Dependencies 54
Engineering data 56
Available critical resources 57

18 Installation 59

19 How will modules affect documentation? 61
Appl. line composition 61
Appl. unit composition 62
Exec. unit composition 62
Ordering information 63

20 A completely different solution 64

21 Conclusions 66

Appendix A - Example of a Module description document

Appendix B - Scaling of a TMOS system

Appendix C - Diary from the thesis work

Preface

6 of 68 Modular handling of TMOS systems

1 Preface

This work has been performed as a thesis project, which is a part of the Master of
Science program in Computer Science and Engineering at Chalmers University
of Technology in Göteborg.

There are two aspects of this work; the academic view of modular handling of
large programs and the specific application TMOS at the SD department at EHS.
This document is intended for readers both inside and outside Ericsson.

We have gathered the information through reading of appropriate literature and
through interviews with people at EHS. The fact that the thesis project has been a
part of a real project at EHS makes it challenging and more interesting. We are
happy to have had this opportunity to learn about Modular Handling in general
and Ericsson in particular.

1.1 Acknowledgements
We would like to thank all the people at EHS in Mölndal who have willingly
answered all our questions and given us help all the way, especially our supervi-
sor Niclas Nilsson who has had infinite patience (in between his own meetings)
and has given us invaluable support in our work.

We would also like to thank our examiner at Chalmers University of Technology,
Björn von Sydow, for his support and good advice.

Introduction

Modular handling of TMOS systems 7 of 68

2 Introduction

Today there are some problems in the handling of the TMOS product. The time
used for handling has increased with each new revision of TMOS. If it shall be
possible to handle TMOS in the future something has to be done.

This report describes a model to simplify handling. This is done by dividing the
system into large blocks called modules and by describing dependencies using
resources. By being careful when defining resources it is possible to achieve a
good compromise between the amount of documentation and the amount of
problems that can be detected.

This model is able to handle dependencies that result from two modules being
dependent on the same resource. However, the model also has enough generality
to handle dependencies where one module is dependent on a resource in another
module.

To simplify handling even more standard configured systems can be created sim-
ilar to the AL concept today. The standard systems are more standardized while
they allow future expansion. The platform module is preconfigured so that it can
be used by most combinations of modules without having to be reconfigured.

All solutions are discussed and motivated. The result is a module description
document that is intended to replace the existing engineering data document.
This document describes the resources in a module and which resources the mod-
ule needs in other modules. This document is described in chapters 16 and 17.

This report is written from the viewpoint of the SD department. How modules
will affect the work in design and other departments is only vaguely considered.
In chapter 19 there is a description of which documents that need to be altered.
This will indicate what has to be done in other departments to adapt to modular
handling.

TMOS in a nutshell

8 of 68 Modular handling of TMOS systems

3 TMOS in a nutshell

TMOS is a software tool for handling all management and operations support
within public telecoms networks. It acts as an ‘enabling layer’, sitting between
the network elements and the network operation and management personnel. The
network elements include switches, transmission systems, radio base stations,
computers and other network management systems, of practically any type.
Since TMOS can interface with every element in the network, the operational
and management personnel can perform almost any task within the network.

The central core of TMOS is an object oriented database, which contains infor-
mation on all the network elements. It provides a model that accurately reflects
what is happening in the network. The model is continuously updated, gathering
information form the network elements themselves, and implementing com-
mands from the operators.

Today TMOS consists of five large subapplications, each with its own special
task.

- XMs basic functions is sending commands, exchange files and supervising
alarms to different parts in the network. It is also used to do performance meas-
urements

- SMAS is used to implement and administrate different services within the net-
work. The services could be e.g. letting the telecom switch act as a company
switch, or administrating 020- and 071- numbers.

- CMAS is the subapplication that handles cellular mobile telephony.

- FMAS administrates and handles the telecommunication ‘highways’ in the net-
work. It is used to find bottlenecks in the network and handling the correction of
overloaded switches and ‘highways’.

- BMAS is used by large telecom customers to handle their internal usage and
costs for telecommunications.

The structure of TMOS documents and programs

Modular handling of TMOS systems 9 of 68

4 The structure of TMOS
documents and programs

This section will describe the essentials of how TMOS is structured today.

At the top of the TMOS structural tree there is Application Lines (AL). These are
complete systems that can be sold to a customer. They consist of several sales
objects which is called FABs. Some of the FABs are optional in an AL and the
other are mandatory. A FAB is a group of programs that is a stand alone applica-
tion within the TMOS system. The relations between the FABs are a bit diffuse.
There are design rules that says that each FAB has to be independent of other
FABs, but these rules are hard to follow since dependencies could appear when
two FABs uses the same functions in the platform (TMOS operating system). A
FAB consists of one or many CXCs. A CXC is the smallest part that is handled in
a TMOS system. Every CXC consist of a number of executable files, scripts and
datafiles. It is at CXC level that the most documentation is made. Every CXC has
its own documents for installation, engineering and specifications. At FAB level
there not that much documentation. The documents at FAB level is mostly mar-
keting and handling documents rather than function descriptions. At AL level
there is more documents such as installation documents engineering data docu-
ments and user and reference manuals. These documents are derived from the
documents at CXC level.

An AL is a general system, so when a customer orders a specific system an appli-
cation system (AS) derived from the AL. If another customer wants a system

The structure of TMOS documents and programs

10 of 68 Modular handling of TMOS systems

with the same configuration, this AS can be reused. In order to know which AS a
specific customer has, a IPB document is generated.

Figure 1. Structure of TMOS.

AL

AS

IPB

FAB FAB FAB

CXC CXC
CXC

CXC
CXC

CXC
CXC

CXC
CXC

CXC

Customer

FABFAB

AL

IPB Customer

IPB Customer

AS

Current system

Modular handling of TMOS systems 11 of 68

5 Current system

The handling of the system is today based on the application line (AL) concept.
An application line is a standard product that consists of both mandatory and
optional FABs and all the documentation that goes with them. An AL could for
example be FMAS, SMAS or any other MAS for either a Sun or HP platform. An
application system (AS) is then derived from the AL by selecting the mandatory
and optional parts according to the requirements of the customer. The AS con-
sists of software, installation and configuration descriptions, maps, and manuals
specific to the customer.

Over the last few years TMOS has grown considerably. This growth has created
problems in the handling and installation of the system. Due to the size of the
system customers want to be able to buy parts of TMOS applications and exclude
other parts that are not necessary for their needs. If the customer buys some man-
datory and some optional parts from the same AL, the application can be sold
without further testing. If a customer wants to combine functionality from differ-
ent ALs there is no assurance that this customized application will work. They
have to be tested separately, while undocumented relations between FABs
renders default parameters invalid.

An AL is created by gathering information on the CXC level and compressing
the installation and configuration information into an AL specific engineering
data document, a parameter list and a maiden installation document. The time
used to generate an application line is growing for each new release of the appli-
cation. Time-consumption has now reached the limit of what is acceptable. The
reason for the time spent in the generation is that information has to be gathered
from many different sources since there are almost no documents at the FAB
level. Another reason is that parts of the documentation have not been completed
by Design at the time of AL generation, so assumptions are made. The creation
of an AL is a sequential task, with one part of the AL being created after another.
Because the AL is generated by people who are less familiar with the new func-
tions in the application a great deal of time has to be spent on learning details. A
lot of work is done by using CXC documentation. These documents are often
very detailed and much of the information is irrelevant to the creation of an AL.

Problems with using AL

12 of 68 Modular handling of TMOS systems

6 Problems with using AL

There are problems with handling the TMOS system the way it is done today:

- The AL has to be created centrally and it is hard to distribute work among peo-
ple. Only when all components are ready can the AL be generated.

-The amount of knowledge needed to generate an AL is considerable. Only the
most experienced people are able to do it since they have to have full control of
the whole AL. In order to make an AL, one has understand all documents at the
CXC level and know which people to ask questions.

- When adding functionality to an existing system, it is necessary to test large
parts of the system even if no dependencies exist. This is the case when creating
a special AS, due to lack of detailed knowledge of how the system really works.
This kind of information is not easily extracted from the mountains of documents
provided with TMOS and it is almost impossible to learn every dependency in
TMOS by experience.

- If an AS differs from an existing AL, new engineering data and parameter list
documents have to be written, for example if an AS consists of parts from two
ALs or if a customer wants to exclude mandatory parts. Writing new documents
is not a very difficult task, but it takes time and is for the most part unproductive.

-There is no proper documentation on which dependencies exist between differ-
ent FABs. This makes it difficult to leave out unnecessary FABs when creating
an AS. The customer therefore has to pay for functionality that is not wanted and
perhaps buy more hardware than needed.

-The installation of an application is also very time-consuming. This is due to a
lot of workarounds at installation time, answering a lot of similar questions and
editing huge numbers of files just to change parameters, that could just as well be
changed automatically. There are several reasons for this, but the main reason is
probably lack of time at the release point and poor specification of how an instal-
lation script should be written. Installation and handling of CXCs have always
had low priority, because one can make workarounds so that the installation
“works” anyway and it is nothing that the customer notices.

- Errors are corrected at SD by introducing workarounds. It may happen that
error reports are not sent back to the Design departments, and the errors will then
remain in the next revision.

Advantages of using AL

Modular handling of TMOS systems 13 of 68

7 Advantages of using AL

- It is easy to install and configure systems that can be derived directly from the
AL. A system derived from an AL does not have to be tested, since the AL is
tested as a unit.

- Since the number of ALs is small, only a relatively small amount of documenta-
tion is needed.

- The installation is fairly simple. Only one document has to be used in order to
make the installation.

- SD can make workarounds. That way, error corrections can be made quickly
without the need to go through the Design departments.

- It is easy to have one person who is responsible for the whole AL. That person
then has control of a complete system.

- An AL can be customized so that it suits the requirements of the customer. Each
FAB can be given a unique configuration so that no extra capacity is used, and
the customer does not then have to purchase more hardware than he needs.

Introduction to solution

14 of 68 Modular handling of TMOS systems

8 Introduction to solution

In order to solve the handling problems, fundamental changes have to be made in
the way that the TMOS system is handled today. There will of course be conse-
quences that need to be considered.

The concept of creating an AL has to be changed. The SD department should not
have to create documentation for the products that they install. Their time should
be spent installing systems, not writing documentation for products already
made. That means that the responsibility for documenting the application has to
be moved to the Design departments. This will be more efficient because the peo-
ple who write the programs have a more detailed knowledge of the inner working
of the programs and should thus be able to create the documentation faster and
more accurately than is the case today. This means that the people who perform
the installation do not need to have so much detailed knowledge. But this will
also require the installation procedure to be designed so that a TMOS system can
be installed without detailed knowledge.

Today the various parts of TMOS are entangled in a way that is hard to overview.
This is illustrated in figure 2. In order to ease handling problems the system has
to be split into a few clearly defined parts. This is illustrated in figure 3.

Figure 2. The TMOS system today

Keeping the possibility of configuring the system according to the requirements
of the customer is important.

Platform

FAB

FAB FAB
FAB

FAB

FAB

Introduction to solution

Modular handling of TMOS systems 15 of 68

8.1 Dividing the system into modules
In order to decentralize the task of documentation a system has to be split into
smaller parts, modules. By doing this, information on how the system fits
together and which parts that match each other is lost. In order to be able to put
the modules back into a system again the interface between the modules has to be
described thoroughly.

It is important to be able to configure the system according to the requirements of
the customer. Fortunately, the modules provide a good way of keeping this fea-
ture. If the modules can be installed separately, this can provide a good mecha-
nism for customizing the system. Another benefit from being able to install
modules separately is that the installation of each module can be done by differ-
ent individuals. The amount of knowledge that each individual has to have can
therefore be reduced. If new functionality is to be added that is put in a separate
module. That way there is no need to redesign modules.

The platform concept helps in the creation of modules because it provides serv-
ices that many modules need. The platform should be the ‘operating system’ for
TMOS that provides all the services that the modules need. If the design of the
platform is good the modules can be made more independent. The platform itself
can be viewed as a special module. The platform should preferably not contain
any optional parts that other modules use. An illustration of how a system may
look tomorrow can be found in figure 3.

Figure 3. The TMOS system tomorrow

8.2 All dependencies are described using
resources
All modules are dependent on the platform module and a few modules depend on
other modules. This means that there has to be a mechanism for describing such

Module Module Module Module

Platform

Introduction to solution

16 of 68 Modular handling of TMOS systems

dependencies and handling any problems that may arise. To do this it is necessary
to describe everything that a module needs to function correctly that is not
present in the module, e.g. databases, CPU, disk storage and server processes. All
such things are called resources. If this is done for every module and every little
resource that a module needs is described, it would make detection of all prob-
lems possible, at least in theory.

Of course it is easy to realize that if all resources were to be described there
would be enormous amounts of documentation. Fortunately, there are a couple of
things that can be done to reduce the amount of documentation that has to be cre-
ated and still be able to detect most problems that may occur. This can be done by
not describing the resources that obviously have to be present in the system.
Another way to reduce documentation is to ease the demand for an exhaustive
description of all resources. Only a few resources can cause problems by being
underdimensioned and it is only these that need to be completely described. A
simplified description can be made for all the other resources.

All information that is needed about the resources is collected and put together
with a description of a module and the information that is normally included in
the engineering data documents today. This document then replaces the engineer-
ing data document. This document, a parameter list and an installation document
will be the documents that are used when configuring and installing modules.
The document should contain information on dependencies and resources and
descriptions of how to reconfigure and rescale the resources when other modules
require it.

8.3 An AL-like concept is introduced to simplify
handling
By introducing a new concept on top of the modular thinking the workload will
decrease even more. Since a group of modules are normally handled together it is
possible to do all the calculations for them once and for all. The result of all the
calculations is a parameter list. This parameter list can then be used again when
the same modules are to be installed together. This is similar to the ALs used
today but with two differences. There is very little documentation at the AL
level, just a parameter list, and it is still as easy to add a module to a system as if
all the modules were handled separately.

Modules

Modular handling of TMOS systems 17 of 68

9 Modules

With the use of modules, handling of the TMOS system can be greatly simpli-
fied. The size of the module is, however, crucial to maximum simplification.

There are many factors that influence and are influenced by the size of a module.
Since there are many issues that need to be addressed and since some issues have
conflicting demands a trade-off has to be made. To acquire a more thorough
understanding of the trade-off that has been made in this solution, the factors that
influence size will be explained more closely.

9.1 Atomic objects
In order to simplify this discussion the concept of the atomic object has to be
introduced. Note that an atomic object does not necessarily have to be a module.
An atomic object is an object that can not be divided into smaller parts. A
number of parameters and other configuration information are associated with
each object. There is a way to find information on how an atomic object interacts
with its environment. This information describes which resources are used,
which other objects this object needs in order to function/install correctly and so
on.

Consider a TMOS system that consists of a number of atomic objects. Of course
the size of the atomic objects is related to their number in a TMOS system. The
larger the objects the fewer there are. Note that an atomic object is not identical
to a module. Modules will be introduced later.

When deciding the optimum size of an atomic object there are many factors that
need to be taken into consideration. These will be examined a little more closely.

9.1.1 Configurability
The size of the atomic object influences the amount of customer configuration
that can be done. If a TMOS application consists of many atomic objects many
objects can be made optional, and thus allowing the customer great freedom of
choice. Large atomic objects result in few objects in a complete system, which
means less freedom of choice. Of course, objects that are necessary for the cor-
rect operation of the system can not be taken away. Another important fact to
notice is that customers tend to choose functions that are related to each other.

Modules

18 of 68 Modular handling of TMOS systems

9.1.2 Number of dependencies and amount of documentation
It is the dependencies between atomic objects that need to be documented. Since
the total number of dependencies in a system increases with the number of
objects the amount of documentation that is needed grows with the number of
atomic objects. It is thus important to reduce the number of objects to minimize
the amount of documentation.

9.1.3 Cost of handling
The amount of work and the cost that is associated with an atomic object are
roughly the same for all sizes of objects. Included in handling costs are those
costs associated with creating and maintaining tapes, writing documentation and
so on. It must be possible to handle objects independently, otherwise they would
not have been atomic objects, i.e. if two objects are always handled together,
installed together and so on, they are really one atomic object. Separate handling
implies that each object has to be configured independently. It is thus desirable to
have as few objects as possible in a TMOS system.

9.1.4 Development
The parallelism in the development of a whole system increases as the number of
atomic objects in a system grows. Development can be carried out on all the
objects at the same time. There is a limit to the amount of parallelism that can be
achieved though, since atomic objects could be dependent upon each other.

9.1.5 Revisions
The handling of different revisions of atomic objects is a complex issue. If
objects are large, there is a lot of work associated with the creation of a new revi-
sion. A problem with small objects is that each atomic object may have several
dependencies to other objects which may call for updating of several objects at
the same time. If objects are stable and do not change much, it does not matter if
an object is large since new versions are seldom created.

The same arguments that apply to handling in general can also be applied to han-
dling of different revisions and thus the cost of handling revisions increases as
the number of atomic objects in a system grow.

9.1.6 Comprehensibility
The understanding of the system increases as the number of objects in a TMOS
system decreases. It is easier to get a general overview of the system if there are a
few objects to keep track of, at least if the objects are logically connected,
although with large objects the details of how things work is lost. The thing to
keep in mind is that with large objects it is easier to get an overview of the sys-
tem, but details must be sought elsewhere.

Modules

Modular handling of TMOS systems 19 of 68

The table in figure 4 summarizes the different factors that must be taken into con-
sideration when deciding the size of the individual atomic objects.

Figure 4. The size of the atomic object affects many parameters

9.2 Different ways of creating modules
Now the module concept is introduced. A module is a part of a system. There is
an interface description associated with each module, describing which depend-
encies a module has to its environment.

There are many ways of dividing a TMOS system into modules. Four different
approaches will be presented here:

9.2.1 Small modules without options
One approach is to let a module be about as large as an FAB is today, and let all
the modules be atomic objects. Handling of the modules in this solution, how-
ever, involves a great amount of work and a very high cost. The problem is not
the complexity in handling each individual module, but the large amount of mod-
ules that need to be handled. If handling of the modules can be simplified and the

Parameter Small objects Large objects

Configurability High Low

Total number of dependencies in a
system

High Low

Amount of documentation Much Less

Cost of handling High Low

Available parallelism in development Much Less

Amount of work when creating a
new revision / correcting errors

Low High

Comprehensibility of system Low High

Modules

20 of 68 Modular handling of TMOS systems

associated cost can be greatly reduced, choosing small atomic objects can be a
way of solving the problem.

Figure 5. A system with small modules that are the same as atomic objects

9.2.2 Large modules without options
Another solution is to let the modules and the atomic objects be large, possibly
the size of five to ten FABs. The problem with this approach is that the configura-
bility of such a solution is low. In fact it would be lower than for an AL today.
There are also problems associated with development and testing. Although a
solution that yields low handling costs, it is not a feasible solution to the problem
since it does not provide enough configurability.

Figure 6. A system with large modules that are the same as atomic objects

Atomic

object

Boundary Atomic object
Boundary Module
Interface description

Atomic

object

Atomic

object

Atomic

object

Atomic object

Boundary Atomic object
Boundary Module
Interface description

Modules

Modular handling of TMOS systems 21 of 68

9.2.3 Large modules with options
Yet another solution is to keep the modules fairly large but let the atomic objects
be small. The atomic object here is approximately the same as an FAB. The mod-
ule then consists of many FABs of which a few are optional. This is a solution
that keeps the number of modules that have to be handled small and thus keeps
the cost of handling down, while still allowing customers to make some options
in their system. A problem that is introduced with this solution is that the mod-
ules can no longer be regarded as black boxes. This increases the complexity of
the description of the individual module, illustrated in figure 7. Instead of
describing dependencies upon other modules, dependencies between FABs have
to be described. Resource requirements can not be described in a simple way for
the module. Instead resource requirements have to be described depending on
which FABs are present and so on. The nice thing about this solution is that it
keeps the number of modules in a system small. The trouble is that the complex-
ity in describing each module is increased a lot. An example of a large module
with options would be an AL with FABs as atomic objects. This is not a great
example though, since modules should be smaller than ALs.

Figure 7. The interface description changes depending on if options are
installed or not

9.2.4 Large modules with constant interface description
The fourth solution is to keep the module large, but the atomic objects small and
let a few of the atomic objects be optional. An atomic object is approximately the
same as a FAB. The only resource requirements described are those for a com-
plete module with all options installed. This is illustrated in figure 8. With this
solution the description of the module can be kept relatively simple. There are
only a few things that need to be described at the FAB level. Most things can still
be described at the module level. The drawback is that more resources, e.g. disk,

Atomic

object

Optional

Atomic

object

Atomic

object Atomic

object

Boundary Atomic object
Boundary Module
Interface description

Modules

22 of 68 Modular handling of TMOS systems

CPU power etc. than are really needed are reserved for the module. But this
might not be a serious drawback since customers may want to add options to the
modules that they already have and then all resources needed will be present. It is
suggested that third party products are not made optional, since Ericsson has to
pay for the license for this software even if the customer has not chosen the
option. If an option uses hardware, it is of course necessary to be able to install
the module without this hardware present at the time of installation.

Figure 8. A module with options with constant interface description

9.3 Comparison of the various approaches
The first solution has the advantage that it offers a simple approach and that the
handling of each module is much simpler than in the other solutions. The draw-
back is the number of modules that a system will consist of. The cost of handling
and engineering will be too high. Engineering for a system will be as compli-
cated as creating an AL today.

The second solution features low costs of handling and engineering. The draw-
back is that it offers few possibilities to customize a system. There would be only
one or two options in a complete system, i.e. less freedom of choice than in an
XM system today.

The third solution features few modules, which indicates that low costs of han-
dling can be achieved. The drawback is that there are many details within the
module that need to be described for example there will be a number of different
dependencies that need to be described for all the FABs present in a module, how

Atomic

object

Optional

Atomic

object

Atomic

object

Atomic

object

Boundary Atomic object
Boundary Module
Interface description

Modules

Modular handling of TMOS systems 23 of 68

much storage each individual FAB uses and so on. There is not much difference
between the first and the third solution when considering the amount of handling
and engineering required.

The fourth solution promises simplified handling and thus low costs. The draw-
back is that more resources than are actually needed are allocated for the module.
However, it does seem the most viable solution, since it offers a way of handling
the system without excessive cost. It is therefore given a more thorough descrip-
tion.

9.4 Creating modules
Creating modules is a complicated task since there are so many different factors
that must be taken into consideration. All these factors need to be weighed
against each other in order to create modules that can be handled at minimum
cost.

9.4.1 Size of modules
There are many factors that influence the size of a module. Some factors result in
low handling cost if there are a few modules in a system. Others give low han-
dling cost if there are few FABs in each module.

Today a typical system contains some twenty FABs. If many FABs are included
in each module there will be fewer modules in a system of any given size than if
there are few FABs included in each module.

Figure 9 illustrates how the different factors influence handling cost. It is impor-
tant to note that the figure is based on educated guesswork. There is no guarantee

Modules

24 of 68 Modular handling of TMOS systems

that the figure is correct, but it should at least give an idea of how a correct size
of a module might be chosen.

Figure 9. Influence of various factors on the size of modules

The figure indicates that three to seven FABs might be a good choice to make up
a module. This would result in four to six modules in a system. In the future there
might be even more modules in a system.

The best size for each module must, however, be decided on a per module basis
by weighing the various factors against each other.

9.4.1.1 R - Revisioning
If more FABs are put in a module, revisioning and error correction will become
slower and more complicated. Up to three FABs can be handled conveniently but
after that the work required for a revision and the time it takes increase rapidly. It
is important to note that a module that is stable and does not require frequent
revisioning can be larger than a module that is revised often. This is because even
if a revision requires a lot of work it does not happen often.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Good

Bad

No. of FABs in a module

E
H

K

D

C
R P

R - Revisioning
C - Customer requirements
P - Parallelism in development
K - Knowledge needed
E - Engineering
H - Handling
D - Dependencies

Modules

Modular handling of TMOS systems 25 of 68

9.4.1.2 C -Customer requirements
The modules should support the different requirements of the various customers.
No customer should have to buy more functionality than he wants. With few
FABs in each module this condition can be met. If a few more FABs are included
in each module it is still possible to meet this condition if the FABs are carefully
selected so that they are logically connected. Using options also aids in meeting
the requirements of the customer. At around six or seven FABs it is no longer
possible to sell only the functionality that a customer wants but he also has to
purchase functions he does not need.

9.4.1.3 P - Parallelism available in the development process
The amount of parallelism that is available in the development process is directly
related to the number of modules in a system. Thus, if there are many FABs in
each module there are few modules and so there is not much parallelism availa-
ble.

9.4.1.4 K - Knowledge needed
The knowledge that an individual creating a module has to have increases as the
number of FABs in each module increases. There is a limit to what is reasonable,
but around ten FABs is considered the maximum. Today a complete system of
about twenty FABs is the limit and thus about half of that seems like a reasonable
amount.

9.4.1.5 E - Engineering
The engineering of a system gets more complicated as the number of modules in
a system increases. It is therefore desirable to have as few modules as possible.
About six or seven modules is about the maximum that can be handled when
doing the engineering. If there are more modules it will be difficult to get the
general overview of the system that is needed.

9.4.1.6 H - Handling
The cost of handling is directly related to the number of modules. The cost of
writing documents, maintaining tapes and so on is almost constant for a module
and not affected by the number of FABs in the module.

9.4.1.7 D - Dependencies
It is desirable to avoid dependencies between modules. All dependencies
between FABs should be contained within the module. In XM it is sufficient to
group three to four FABs together in each to entirely avoid dependencies
between modules.

Modules

26 of 68 Modular handling of TMOS systems

9.4.2 Licenses and options
The best way of handling options is to distribute them on the same tape as the rest
of the module and then use licensing procedures.This will keep the cost of han-
dling options down. All parameters are described, even those that belong to
options not installed. When a customer wants to add an option the only thing that
has to be done is to ‘unlock’ the option with a license code and the option will be
operationable.

Pricing will also be simplified by using licensing procedures since handling mod-
ules will be less dependent on customer requirements. Today customers are
forced to buy functionality that they do not want just because that functionality
can not be ‘locked’. The question is how much Ericsson can charge for these
functions. With licensing procedures these delicate questions could be avoided.

When creating a module the number of options in the module should be kept to a
minimum. This will reduce complexity since complexity grows with the number
of options. The need for a large number of options may indicate that the module
is incorrectly designed. If there is a large number of options in a module and
those options are not installed, there will be much unused capacity in the system
since the requirements of a module do not change whether an option is installed
or not.

Third party software should not be optional in a module. Even if a customer
decides to leave the optional third party software out it still has to be installed,
although locked, together with the rest of the module. This means that Ericsson
still has to pay for the licence. Hardware should not be optional either. If an
option requires special hardware and the option must be in a special module it
must still be possible to install all software even if the hardware is not present.
Unlocking that option may still be a little difficult. In addition to unlocking the
option the hardware has to be installed and it is possible that the module needs to
be somewhat reconfigured.

The best way to handle optional third party software and optional hardware is to
put them in a module of their own and make them mandatory. This way most
problems are avoided at the cost of an additional module.

Options in a module may not be dependent on other modules. Consider the fol-
lowing case. In module A there is an optional part that is dependent on module B.
One customer does not want that option in module A, but in order to be able to
install module A he still has to have module B. The customer is therefore forced
to buy a module that he does not use. By not allowing options in modules to be
dependent on other modules these problems are avoided.

Modules

Modular handling of TMOS systems 27 of 68

9.4.3 Other things to consider when creating modules
The most vital thing to consider when creating modules is that the components in
the module must be logically connected. This must have greater priority than the
actual size of a module. There is no upper limit for the size of a module as long as
it is still possible to handle the module and most customers require all the manda-
tory parts in the module, e.g. the platform.

It is important to avoid dependencies on other modules (other than the platform).
Avoiding horizontal dependencies will give a hint as to which FABs are logically
connected and will also reduce the amount of description that is needed for the
module.

The dependencies that need to be described on the FAB level are dependencies
between the different FABs in different modules. The dependencies are such that
one FAB will not function or will function incorrectly if another FAB is not
present in the system. This type of dependency is very rare, but if for some rea-
son they need to exist there must be a way of describing them.

To simplify handling the modules are equipped with a default configuration that
Design has worked out. This means that many modules can be installed without
needing to configure it.

If many customers only want a part of the mandatory part of a module, that mod-
ule may be split into two modules. The reason that a customer wants only a part
of a module is often that there exists a logical gap in the module.

If a module is stable, i.e. if it is not revised often, and the module contains func-
tions that the customer always purchases together, the module can be larger. An
example would be the platform, which all customers need.

Advantages of modular thinking

28 of 68 Modular handling of TMOS systems

10 Advantages of modular
thinking

One of the reasons for modular handling is that it makes it possible to handle
each module independently of the other modules, allowing one person to be
totally responsible for each module. This person can have full economic control
of the module and therefore charge the right price for it. If the sales of the module
drop this will be obvious to this person and action can be taken, e.g. better mar-
keting, modifications or simply stop selling the module. There are several other
benefits of modular handling, and these are described in the following sections.

10.1 Simplified engineering
- There is no need to search in many places to get hold of required information in
most cases. Today, when information is found at the CXC level it is often too
detailed. The time and knowledge needed to generate a customer specific system
is therefore reduced.

- If there is a description of dependencies to other modules, combinations of dif-
ferent modules can be installed in a reliable manner. With a dependency descrip-
tion it is possible to foresee where problems may occur, e.g. two modules use the
same database or two modules send drag & drop objects to each other.

- Today an AL is already engineered, enabling standard systems to be created
fairly easily. It is when a system that can not be derived from an AL has to be cre-
ated that a lot of work has to be done. Modules require a little more work every
time a system is to be created, but this is outweighed by the fact that there are no
special cases that require large amounts of work.

- A well defined module makes configuration much easier. If one or more mod-
ules are added to an existing system it is easier to rescale and reconfigure the sys-
tem, since every module has its own well specified requirements on the system.
There is no need to guess or test.

10.2 Simplified handling
- The need to rewrite engineering data documents for specially advanced custom-
ers is reduced, since no extra FABs which can alter the engineering data can be

Advantages of modular thinking

Modular handling of TMOS systems 29 of 68

included in a module. If new hardware configurations are used it might of course
be necessary to rewrite the engineering data for the module.

- Using licensing procedures the pricing of the system will be less connected with
the handling of the system. This will make handling price profiles easier since
the handling needs to be considered less. The problem with charging for func-
tionality that the customer does not need is avoided.

- The flexibility of the system will increase, since the system can be customized
according to the customer’s needs.

- It is possible to decentralize knowledge so that a few people are experts on one
module each. This is not possible today because one has to know a lot about all
FABs to be able to understand how they are related.

- It is also easier to get an overview of the system when it consists of several well
defined ‘black boxes’. At least if the ‘black boxes’ consist of logically connected
functions.

- A revision of an application, i.e. error correction, can be done on a separate
module instead of as today on a whole AL. Each module can live its own life
independent of the other modules. Some modules change frequently while others
seldom change. That way the time from an error report to the correction of the
error on site is reduced because it is only the module that requires a new revision,
not the whole AL.

- Modular handling aids in structuring TMOS. By requiring that modules be log-
ically connected and by enforcing a way of describing interfaces odd dependen-
cies will be detected and it will then possible to change the design so that these
dependencies are eliminated.

10.3 Simplified testing
- The need to make comprehensive tests when adding new functionality to an
existing system is reduced since it is sufficient to test only the parts that are
dependent on the new module that contains the new functionality.

Problems with modular thinking

30 of 68 Modular handling of TMOS systems

11 Problems with modular
thinking

There are some drawbacks in using modules in the TMOS system if no exten-
sions are made to how modules are used. The problems are:

- The first installation of a system, i.e. maiden installation, has to be done in the
same manner as upgrades of the system. First by installing the platform and then
adding one module at the time. The reason for this is that no superior documents
exist describing how to handle a complete system.

- In some cases it will probably be necessary to have access to all module
description documents for the previously installed modules, as some of the load
estimations of resources may need parameters from all installed modules that use
the resource. It is suggested to make the configuration formulas and guidelines so
that parameters from other modules are not needed, but this is probably hard to
do. Since every module has its own set of documents which sometimes have to
be used, it will probably be a small problem to handle them especially at a
maiden installation.

- Another problem is that the module description document is supposed to be
written by the Design departments, who do not have a good overview of the sys-
tem since all FABs are not developed in the same place. It would be necessary to
have a person who is responsible for each module and who has a wider knowl-
edge of the system. He should arrange for all the different parts of the module
description document to be written by the people who know the subjects best and
then put them together into a description document of the module, i.e. an
extended engineering data document.

- A great many man hours need to be spent on developing all the formulas and
guidelines for estimating the load on resources. Today very few resources have
this kind of description. It is probably very hard to calculate the load on a
resource especially if the results should be in terms of delta values, i.e. how much
a parameter has to be increased, and not an absolute value. This is in order to be
able to ignore all previously installed modules that use the same resource.

- One problem is that models are needed for estimating load on and performance
of resources. If calculation shows that a resource is adequate there is no need to
test that it is. These models are used instead of tests. The problem occurs if the
models are erroneous. This could lead to errors that would have been found with
tests.

Problems with modular thinking

Modular handling of TMOS systems 31 of 68

- One of the goals when introducing the module concept into the TMOS system
was to eliminate the need for functionality tests when adding a new module to a
system. To be 100% sure that one module does not affect another, every little
dependency has to be thoroughly described and every available resource has to
be defined. The amount of work this would demand is not in proportion to the
gains. It is therefore necessary to choose which resources to describe. This intro-
duces problems since it is difficult to create the rules for which resources that
have to be described. This in turn opens up the possibility of making an error
when describing resources by accidentally leaving out important information.
The result is that it is not possible to be 100% sure that modules will work
together, but one can be sure enough if the important dependencies are described.

Chapter 13 describes some ways of easing these drawbacks.

Describing dependencies

32 of 68 Modular handling of TMOS systems

12 Describing dependencies

In order to know which parts of a system are affected by a module there has to be
a way of describing how a module affects its environment. This is in order to
know if the module will work in the environment and if the module uses some
resources a lot. These commonly used resources might have to be resized to
increase the capacity of the resource.

A dependency between modules is introduced when one module has a resource
that another module wants to use. Since the concept of resources will be used in
the following discussion a basic definition is given and then details in the defini-
tion of resources will be discussed. A generic resource is shown in figure 10.

12.1 What is a resource?
- A resource is something in one module that another module might need. A
resource can be hardware, such as disk, communication channels and memory or
intangible things such as port numbers. Databases and services provided by serv-
ers are also resources. Hardware resources belong to the platform module. In the
description of a module there is a part describing the resources it uses:

Figure 10. Generic resource

- A description is associated with each resource. This describes what the resource
is and a model for dimensioning the resource is also included.

f(x) .. x
X∑

Description of the
resource

Model for
dimensioning
the resource

Service provided by the resource

3,4

sinceif

do

Unit
performing
the actual
work of
the resource

Describing dependencies

Modular handling of TMOS systems 33 of 68

- All problems with interconnecting modules are related to resources. Since a
resource is something in one module that another module needs, all interconnec-
tions between modules can be looked upon as a module needing resources in
other modules. Then, if all interconnections between modules are related to
resources all problems with the interconnections are also related to resources.
Since two objects that do not share anything can not affect each other no conflicts
can arise. It is when two objects share something that a conflict may arise. If that
something that they share is defined as a resource, that conflict may be detected
and also solved.

12.2 Size of resources
One problem is deciding the size of a resource, and a problem which is related is
what a resource is. A few examples might help to clarify what size is. For exam-
ple, the information model is a large resource, while a port number is a small
resource. Size is not to be confused with the performance of a resource. The size
of a resource has to be a trade-off between the exactness of the description and
the amount of documentation to describe all resources in a TMOS system. If the
resources are large, there will be few resources in a system and thus the amount
of documentation will be reduced, although the exactness of the description will
also be reduced. Fortunately, the size of the various resources can vary in a sys-
tem such that a better compromise between the size an exactness can be
achieved. Those resources that need exactness in the description can be small and
the other resources can be larger, thus reducing the amount of documentation.
The description of dependencies is intended to detect and resolve all conflicts
between modules and because of this the following can be concluded about the
size of resources: ‘The size of a resource should be such that it is as large as pos-
sible while being exact enough to resolve all conflicts that may arise.’ Anticipat-
ing all conflicts that may arise is not easy and it can not be done completely, but
by looking at known problems and following predefined guidelines a relatively
good approximation can be made. It is important to note that although the
resource concept may be difficult to handle, in theory it provides a complete
method for detecting all conflicts.

12.3 Which resources shall be described?
If all resources are described there will be a great deal of documentation. It is
therefore important to reduce the amount of documentation in order to reduce
cost. It is important to note, however, that if all resources are not described all
possible conflicts will not be detected. But if the description of the resources that
are related to highly unlikely conflicts are left out, a good trade-off between cost
and completeness can be achieved. However, conflicts that result from some
resources not being documented can be hard to track down.

Describing dependencies

34 of 68 Modular handling of TMOS systems

Another thing to note is that when the amount of documentation is reduced, the
rules for how to document things become more complex. It is relatively easy to
have a rule requiring the documentation of everything. When only some things
have to be documented, rules for what shall be documented have to be added. It
is important that the rules for describing dependencies be clear and unambigu-
ous. If they are not, there will be misunderstandings that will result in errors.
Unfortunately, there is no known way of stating such rules, but it is nonetheless
important to try to be as clear as possible.

One important observation that can be made is that it is only when a resource is
scarce for some reason that the quantity has to be known. It is for instance inter-
esting to know that a database uses 20 Mb on a device if the device can only hold
100 Mb. It is not interesting to know how much space that database uses if the
device has an infinite amount of storage. Of course, nothing in a computer is infi-
nite but some resources are almost limitless while others present real limits. The
resources that are limiting are called bottlenecks. The important thing to note is
that it is only dependencies on bottlenecks that need to be described with quan-
tity. Of course, determining which resources are bottlenecks might present a seri-
ous problem. It may be hard for an assistant programmer to determine which
resources really are bottlenecks. It will probably require experienced personnel
and measurements to find the bottlenecks. Fortunately, if a few extra resources
are added for safety’s sake, the only penalty will be additional documentation.

Even if it is not necessary to describe quantities for resources that are not scarce
the resources still have to be there. This would call for a description of all
resources that a module uses. But there are many resources that can be thought of
as obvious, such as network elements, communication boards (HSI board) and
PMS and those obvious resources can be left out. Note that resources that are
bottlenecks still need to be described even if they are obvious. Determining what
is an obvious resource may be really difficult since what is obvious to one person
may not be obvious to another. One way of solving this problem may be to create
a list of all the obvious resources that exist e.g. network elements, PMS and so
on. If such a list is not created people will have to decide for themselves what is
obvious and this will lead to errors. One way to define the obvious resources is to
say that all resources that the platform provides are obvious.

12.4 Where shall resources be described?
Another problem is related to where the description of the resource shall be kept.
There are two different approaches that can be used. The information can be put
in the module that uses a resource or in the module that provides the resource.

Keeping the information together with the module that uses the resource results
in a minimum of describing, since only those resources that are actually used are
described. Although this might seem like a good approach at first, this method

Describing dependencies

Modular handling of TMOS systems 35 of 68

has several drawbacks. There will inevitably be multiple descriptions of the same
resource scattered in the various modules. This will create problems with keep-
ing the descriptions consistent and since the same description is found in many
places the amount of documentation will grow.

The other way is to keep the description of a resource together with the module
that provides the resource. The drawback here is that there is a chance that
resources that are not used are described anyway and this will create more docu-
mentation than necessary. Most resources are defined because they are needed so
this might not be a big problem. The advantage with this way of describing is that
each resource is only described once and thus the problems with keeping multi-
ple descriptions consistent disappears. This is also consistent with the object-ori-
ented thinking, a way of reasoning that has been widely accepted.

12.5 A model for describing resources
There are many ways of combining these demands into a method of describing
dependencies among modules. One combination is given here and that combina-
tion is discussed in more detail. Other combinations are of course possible, but
this is believed to offer the best trade-off between cost, ease of handling and the
number of conflicts that can be successfully detected.

Figure 11. Model for describing dependencies

The resources that are scarce, or might present a bottleneck, are described in the
module that provides the resource, module C in figure 11. In this description a

3
4

Scarce resource

Resource
Description
of resource

Parameter

Module C

Module A Module B

Back propagated
parameter i.e.
timeouts etc.

1.2

Describing dependencies

36 of 68 Modular handling of TMOS systems

model for dimensioning the resource is included. Input parameters to this model
are provided by the modules needing the resource, modules A and B.

In the description of a how to dimension a resource there is also a description on
how to expand the resource if more performance from that resource is needed.
The reconfiguration of a resource must be very simple. In most cases it should be
enough to change only one parameter to reconfigure a resource.

Dependencies on resources that are not bottlenecks are described in a simplified
form. This information is used when testing the module in the new environment.
In the modules that use a resource (module A) the fact that they do so is stated.
This information is needed in order to determine which modules are needed in a
system. There is no description in the module that provides the resource (module
C). This way it is possible to handle the use of such things that the creator of the
module did not anticipate from the beginning.

Dependencies on obvious resources are not documented anywhere, which con-
siderably reduces the amount of documentation. Obvious resources that are bot-
tlenecks and dependencies on those resources still need to be described.

It is possible that some parameters, e.g. time-out values from a resource need to
be back propagated to a module, the parameter from module C to B in figure 11.
This should, however, be avoided whenever possible.

In some cases, a resource is accessed via another resource. This is the case when
modules subscribe to events. The event is sent to the platform by one module and
then distributed to all the subscribing modules. In these cases it is of course not
the distribution-process in the platform that is the actual resource (if the process
is not a bottleneck). Information of how many events, orders or messages that are
sent to the platform is to be described. If it is possible to subscribe on the infor-
mation, names of the subscriptions should be included. In this way it is possible
to match the subscriptions in the dependency description.

All modules are equipped with a standard configuration so that there are only a
few parameters that need to be changed when the module is to be installed.

12.6 Pros and cons with describing resources
The benefit of this approach is that the amount of documentation is kept to a min-
imum. The only extra (not useful) descriptions that might occur are those
describing resources that are not used by anyone. This may not be a serious prob-
lem since most resources are created because they are needed by someone.

By describing the dependencies it is also possible to determine which modules or
parts of modules that need to be tested when changes are made to a module.

Describing dependencies

Modular handling of TMOS systems 37 of 68

There will be no need to test the whole system just because one module has
changed.

It will be difficult to keep track of all the resources since a resource can be
defined by using it. Although this is a drawback, this is outweighed by the fact
that there is no need to administer all resources in the TMOS system. It does not
affect the model if all resources are defined and registered centrally.

12.6.1 Describing performance with formulas
To be able to know if a resource is to be reconfigured it is necessary to predict the
load on and capacity of the resource. This is one of the big problems with modu-
lar handling. Is is perhaps possible to make some kind of computer related con-
stants that can be used in formulas. If there is no such constant, it is hard to
estimate how much of a resource’s capacity a dependant module is using.
Another way is to give examples of different hardware configurations and how
the resource’s capacity relates to them.

12.6.2 Problems when adding a new module
One problem arises when a new module is to be added to a system. This is illus-
trated in figure 12. The system consists of the platform, module A and module B.
Module C is to be added.

Figure 12. Adding a new module to a system

The problem occurs if module C uses the same resource as A and B. In this case
the document describing module A, B, and C has to be gone through to find the
parameters that are needed to dimension the resource in the platform. This is an
unwanted effect and there are two things that can be done to get around it.

Platform module

Resource

Module A Module B
Module C

Describing dependencies

38 of 68 Modular handling of TMOS systems

The first thing is to have a procedure to determine how much of the resource is
already used. For example, to determine how much space that is used on a disk
UNIX is “asked”. Such procedures can be created for all resources eliminating
the need to check all documents.

The other thing that can be done is to document how much of a resource is used.
This documentation can be created either manually with “pen and paper” or auto-
matically by some kind of resource information database in the system.

Both of these solutions require that it is possible to redimension the resource only
by knowing how much is already used and the parameters from the new module.
If none of these two approaches are implemented or if the results need to be back
propagated the only thing left is to go through all the documentation. In order to
ease this task the documentation has to be as standardized as possible so that the
same information can be found at the same place in all documents. The number
of parameters that has to be changed when adding a new module must be kept to
a minimum, e.g. changing the size of a database should be done by changing a
number in only one place in the system.

Additional simplification

Modular handling of TMOS systems 39 of 68

13 Additional simplification

The concept with modules and resources is sufficiently powerful to allow han-
dling of TMOS in the future, but handling might still be a little cumbersome.
Two additions are therefore made that simplify handling even more.

13.1 Predefined platform
Even if the platform is like any other module it still has a few characteristics that
make it unique. These characteristics can be used to simplify the handling of the
system.

- Most resources are located in the platform.

- All modules are dependent on the platform. There will thus be a platform in
every system.

- Many resources in the platform are interfaces. Another program is often needed
to make use of that resource.

13.1.1 Using the platform to define obvious resources
Since the platform is present in every system and many resources are located in
the platform it is possible to let the platform define the obvious resources, con-
siderably reducing the documentation describing dependencies.

Dependencies on options in the platform must still be described since there is no
guarantee that the option will be present. It is therefore vital to keep the number
of options in the platform as small as possible.

Many options need another program to take advantage that option, e.g. inter-
faces. If the option is made mandatory in the platform this does not matter. The
program using the option can be sold at a higher price.

13.1.2 Preconfigured platform
The platform is special since all other modules depend on it and thus the platform
is present in every system. By having a preconfigured platform defined for each
THP the installation can be greatly simplified.

If the installation were to be done strictly abiding by the modular concept, there
would be many unnecessary steps. In order to illustrate this, suppose that a sys-

Additional simplification

40 of 68 Modular handling of TMOS systems

tem with three modules A, B, and C, and a platform are going to be installed, see
figure 13. The following steps would then have to be performed:

Figure 13. An example system

1. Install the platform module. Note that all bottlenecks in the plat-
form do not have any capacity now.

2. Use the documentation for module A to see which dependencies
that module has on the environment, and calculate the new config-
uration for the resources that the module uses.

3. Reconfigure the resources in the platform to accommodate the new
module.

4. Install module A.
5. Use the documentation for module B (and possibly module A) to

find out which resources that module B uses and recalculate those
resources.

6. Reconfigure the resources that module B uses.
7. Install module B
8. Repeat steps 5 through 7 for module C.

One way of easing the procedure is to have the platform preconfigured, i.e. many
of the resources are already dimensioned so that the resources in the platform can
accommodate a number of modules before the resources need to be reconfigured.

Another simplification that can be done is to do all the calculations before any
modules are installed. That way one can do all the calculations at home and then
go to a site to install all the modules. The installation procedure would now be as
follows:

1. Use the documentation for modules A, B, and C to find out which
dependencies they have on the platform and on each other. Calcu-
late the parameters for the resources both in the platform and in the
modules.

Module Module Module

Module

A B C

Platform

Additional simplification

Modular handling of TMOS systems 41 of 68

2. Check if the resources in the platform can accommodate the mod-
ules. If the resources in the preconfigured platform are dimen-
sioned properly the platform will accommodate most combinations
of modules.

3. Install the platform. In most cases no configuration will have to be
done. If the modules did not fit, the platform must be reconfigured.

4. Install modules A, B and C. Note that special dependencies
between modules may prevent the modules from being able to be
installed in parallel.

5. If the modules were dependent on each other configure the
resources in the modules.

13.2 Ready-made calculations
With a preconfigured platform the step of reconfiguring the resources in the plat-
form does not have to be performed in most cases, but there is still a need to do
all the calculations in order to determine if it is safe to install the modules. But
this step can be circumvented in many cases too. Figure 14 illustrates the normal
actions to create a system.

Figure 14. Procedure to create a system

If the parameter list is kept the next time the same combination of modules is to
be installed, the same parameter list can be used again. This is similar to the AL
concept that is used today, but with one big difference, namely that it is still pos-
sible to determine if it is possible to add another module to such a system and
how adding a module is done.

Calculate

Select modules

Parameter list

Install

System

Additional simplification

42 of 68 Modular handling of TMOS systems

All documentation is still at module level. The only documentation that has to be
present on the new AL level is the parameter list, a description of which combi-
nation of modules and THP that list belongs to.

Of course it would be necessary to redo some or possibly even all calculations
when a module is revised, but if the modules do not change frequently it will be
possible to reuse the calculations to quite a high degree.

Another problem is that many combinations of modules exist together with dif-
ferent options in modules. But since all modules are configured as if all options
were present, the number of combinations will not be so large. For the same rea-
son there will be some flexibility allowed within each AL.

This new AL does not allow customizing of applications in any way. If a cus-
tomer wants a larger or a smaller system, e.g. database sizes, a new AL has to be
created. This AL can then be used by other customers that have similar needs.

13.3 Preconfigured modules
When modules are to be installed there are a number of parameters that have to
be set, but many parameters are usually the same. If the modules had a standard
configuration there would only be a need to change a few parameters when the
module is installed.

Parameters that are internal in the module and therefore not needed outside of the
module, are set by the creator of the module. These parameters can not be
changed at all, because there is no need to change them. This eliminates the
errors caused by accidentally changing parameters that should not have been
changed.

13.4 Resource server
A second step in simplifying the handling of the system might be to create an
automatic tool that keeps track of all the resources in a system. The modules or
the system administrator can use the tool to see if there are enough resources
available in the system if another module is to be installed. When a module is
installed it will tell this tool (resource server) how many resources it uses and the
resource server will then update its data.

This tool could possibly be used standalone as a tool for the people doing engi-
neering and installation. It could also be used by sales staff who would be able to
tell the customer in a few seconds if he can install another module in his system
or if he has to upgrade his hardware also.

Demands and restrictions when using modules

Modular handling of TMOS systems 43 of 68

14 Demands and restrictions
when using modules

To be able to use the modules efficiently and successfully, there are some
demands that must always be met and some that should be met if possible.

It is important that everyone follows these demands and that the modules are cre-
ated so that they adhere to the standard. This is to make the modules work as effi-
ciently as possible. To make it possible to follow the demands, well defined
design rules are needed. The demands that the modular concept places on the
design of modules are presented here.

It is also important that the engineering does not have to be done for each new
system. It is therefore important to create the parameter lists and then derive the
systems from those lists.

14.1 Modules
- It must be possible to reconfigure the resources in a module. This requires that a
parameter is only defined in only one place. If this rule is not followed, it will
inevitably occur that a parameter is changed in one place but not another, which
will lead to strange errors that are hard to find.

- A module should not be dependent on other modules except the platform. Mod-
ules should especially not be mutually dependent on each other. Handling will be
greatly simplified if modules are dependent on the platform only.

- It must be possible to locate bottlenecks. This is necessary to determine which
resources must be described completely and which resources only need a simpli-
fied description. This reduces the amount of documentation.

- Resources must not be overdimensioned, i.e. no safety margin must be added to
the demands on the resources. Adding safety margins can be done when a system
is created.

- All parameters must have default values, which reduces the number of parame-
ters that need to be changed when the module is installed.

- One module may read data from or add data to another module’s database. This
should preferably be done with the server-processes that administrate the data-

Demands and restrictions when using modules

44 of 68 Modular handling of TMOS systems

bases. But modules may not alter or delete data, or add or delete tables or rela-
tions. If a module has to alter or delete data in another modules database, this
must be done by using an interface in the module that owns the database, not
through direct manipulation of the database.

- One module may read files in another module, but it may not alter them in any
way.

- Back propagated parameters should be avoided, enabling the amount of work
that has to be done when a system is engineered to be considerable reduced.

- One CXC may not appear in more than one module.

- Installation dependencies must be avoided, i.e. one module has to be installed
before another. Installation dependencies make it harder to administer installa-
tion and makes error recovery of the installation more complex, i.e. if the instal-
lation of a module fails, errors can also occur in other modules.

- There should be one person responsible for each module. This person can have
complete control over a module, making it easy to see if each module is generat-
ing profit.

14.2 Options
- If an option in a module is dependent on hardware, it must still be possible to
install that module even if the hardware is not present. An example would be a
communication module that requires special I/O hardware to work. It must be
possible to install that module even if the hardware is not present. This way the
customer is not forced to buy hardware that he does not use. In many cases it is
better to place the hardware and software in a separate module.

- If an option is dependent on hardware it must be possible to reconfigure the
module to accommodate the new hardware when the option is unlocked.

- An option in a module must not depend on another module, this way the cus-
tomer is not forced to buy modules that he does not need. If an option in a mod-
ule depends on another module, that option should be moved to the module it
depends on. If modules are created from logically connected functions this prob-
lem should not occur.

- Licensing procedures must exist. If not, it will not be possible to handle options
in a module efficiently and the whole module concept will collapse.

Demands and restrictions when using modules

Modular handling of TMOS systems 45 of 68

- Third party products should not be optional. If a third party product is optional
and the customer leaves that option out, the software still has to be purchased by
Ericsson and installed, even if it is locked.

14.3 Platform
- The platform should not have options. This reduces handling and the amount of
documentation in a system. In certain cases options may be necessary though.

- The platform should be preconfigured so that it fits different combinations of
modules without changes. Installation of new modules will then be simplified,
since it will not be necessary to alter the resources in the platform every time a
new module is to be installed.

- The platform should be able to handle all TMOS applications. All applications
should be built on the same platform. Using only one platform will reduce prob-
lems when two TMOS applications are to be installed in the same system.

- There must exist a way of determining how much capacity there is left in a
resource.

14.4 Installation
- It must be possible to define all parameters before the installation of a module.
When the module is to be installed all parameters are entered and then the whole
module will be installed without user interaction.

- No workarounds are allowed in the installation procedure. This will reduce the
time it takes to do the installation by reducing the amount of user action and will
also reduce errors due to typing errors from the operator.

- Modules must be completely installed by their own installation script. All
authority and configuration of user categories, e.g. .login files should be handled
by the module.

- It must be possible for a person to install a module without detailed knowledge
of the whole system.

14.5 Documentation
- A list of all obvious resources must exist. It is basically a list of all the resources
in the platform.

Demands and restrictions when using modules

46 of 68 Modular handling of TMOS systems

- The documents describing the module must follow the standard closely so that
it is easy to find the required information quickly.

- Documentation of how to rescale and modify a system has to be written in order
to be able to add functionality. This could be how to expand form one THP to a
larger one, or adding harddisks or describing complex resource reconfigurations.
These documents are referred to in the module description document.

Comparison of modules and AL

Modular handling of TMOS systems 47 of 68

15 Comparison of modules
and AL

There are many aspects that need to be considered when comparing modules and
AL. In some aspects the two are similar while in others they differ.

15.1 Adding functionality to an existing system
Adding functionality to an AL-based system is easy if that functionality is part of
the AL, i.e. options. But adding functionality that is not part of the AL can be
very difficult in most cases. This is due to the fact that there is no way of know-
ing which resources are needed and how the new functionality will affect the sys-
tem.

Adding functionality to a system based on modules is easier. If an option is to be
added to a module all that has to be done is to unlock that option. Adding another
module to the system is a little more complicated, but it can still be done reliably
with a limited amount of work.

15.2 Scaling of systems
Scaling of systems is difficult in both cases if scaling requires the addition of
hardware. This is because it is difficult to follow the THPs that exist especially if
the existing THP is a few years old. Consider a system that was new two years
ago and consisted of two SUN SS10. It is not possible today to buy two new
SS10 in order to upgrade to the next THP.

The advantage of modules is that there are scaling procedures included in the
module description document.

15.3 Configurability
It is possible to configure an AL so that it fits more different needs within the AL
than with modules. Module based systems can not be adapted to such a great
variety of customers within an AS, but it is easier to create a new module-based
system than it is to create a new AL. The reason for this is that the modular con-
cept is intended to simplify handling and therefore the modules are more stand-
ardized and some configurability is omitted.

Comparison of modules and AL

48 of 68 Modular handling of TMOS systems

15.4 Installation
Installation time does not vary much between modules and AL. The factor that
influences installation time the most is how the installation procedure is
designed. To reduce the installation time as much as possible all parameters
should be entered beforehand in some kind of database and then the rest of the
installation should be automatic with no operator interaction.

A module description document

Modular handling of TMOS systems 49 of 68

16 A module description
document

The purpose of a module description document is to make modular handling pos-
sible. The document can be looked upon as an extended engineering data docu-
ment. The information that differs from the engineering data document is
descriptions of dependencies to other modules and what these dependencies con-
sist of, a description of the available resources that the module offers to other
modules, and a description of how to reconfigure the system if a module has
requirements a resource that can not be met by the present configuration. It is
important to state that all the information in this document should be on a need-
to-know basis, i.e. no unnecessary information should be included. If a special
configuration problem occurs it has to be dealt with at CXC description level or,
if that is not possible either, by asking the designer. The descriptions at CXC
level do not have to describe dependencies since the amount of work needed to
create that many dependency descriptions at this level is very great. The module
description document does not include details at CXC level in order to simplify
the ordinary handling of modules.

The important headings in the document are:

- Short description
- Table of dependencies
- Dependencies
- Engineering data
- Available critical resources

16.1 How to use the document
The document can be used in several different situations e.g. a maiden installa-
tion or when adding a module to an existing system, but they all end up in almost
the same usage procedure. Some different usage procedures will be illustrated
here.

16.1.1 Creating a system specific parameter list
A system specific parameter list is a pre-engineered list of all parameters in a sys-
tem. A system is a combination of different modules. The reason for keeping a
parameter list for each specific system is that the configuration of a system takes
time. If the configuration of a site can be done by using an old system configura-
tion a lot of time can be saved. The probability that a similar system has been

A module description document

50 of 68 Modular handling of TMOS systems

configured before is quite good, since only the modules need to be the same and
not the options within them.

The documents needed for the configuration of a new system are the module
description documents and parameter lists for all the modules that are to be con-
figured. A system specific parameter list is created as follows:

1. Check if all dependencies can be handled by the modules that are
to be installed or if other modules or options have to be added as
well. This is done by using the ‘table of dependencies’. This table
also tells which modules must be installed before others.

2. Find out if there are any conflicts in dependencies between the
modules. This is done by looking in all module description docu-
ments to see if they are dependent on the same resources or if they
have other dependencies that could cause problems, e.g. different
communication protocols. All these dependencies are described in
the section ‘Dependencies’. Then check if conflicts may occur; the
parameters that are to be set due to requirements of dependencies
must be written down in a new system specific parameter list doc-
ument that is needed at installation time. If modules use the same
resources the parameters must be summed and calculated accord-
ing to instructions in the section ‘Available critical resources’ in
the document for the module which contains the resource (in most
cases the platform-module). In some rare cases parameters can be
sent back from the calculation to the dependent module. These
parameters must also be included in the parameter list.

3. Now all dependent parameters are set so that no conflicts are
caused and all requirements of the modules are met. This work has
be done in a parallel manner, i.e. all documents must be considered
at the same time in order to sum all the modules’ requirements.
The rest of the configuration can be done sequentially, one module
at the time.

4. The parameters in the parameter list for the modules are trans-
ferred to the system specific parameter list. Note that only system
specific parameters have so far been set and site specific parame-
ters, e.g. hostnames and ip-addresses are not yet set.

16.1.2 Configuring and installing a system
In this section it is assumed that a system specific parameter list is available for
the kind of system that is to be installed. If there is no such parameter list, one
should be made according to the section above. All maiden installation docu-
ments, for the modules, should also be available. The module description docu-
ments are needed for naming hosts and servers for instance, according to given
standards. Configuration and installation are done as follows.

A module description document

Modular handling of TMOS systems 51 of 68

1. The system specific parameter list should now be altered so that it
fits the specific site where the installation is to be done. This is
done by exchanging all variable names with site specific names
and figures. The new parameter list can not be used by any other
sites but the one it is created for.

2. The site specific parameter list can now be used together with the
maiden installation documents for each module. The installation
has to be done in the order that was concluded in 14.1.1.

16.1.3 Adding a new module to an existing system
When adding a new module to a system it is vital to be able to reconfigure the
system according to the new module’s requirements on the system and knowing
that the module does not influence the functionality of the existing system. The
documents needed to perform the installation are the module description docu-
ment, the maiden installation document and the parameter list document for the
module that is to be installed. Furthermore, all module description documents for
the installed modules are needed. The procedure for adding a new module is not
very complicated.

1. Check if the module needs any other modules than those already
installed in the system. If that is the case these must be installed as
well. If the module is dependent on an option in an existing mod-
ule and this option is not licensed, this option has to be ‘unlocked’.
These dependencies are described in the section ‘Table of depend-
encies’ in the module description document.

2. Some of the dependency in the section ‘Dependencies’ involves
redimensioning different resources. In order to do so one needs to
look up which of the other modules is dependent on the resource,
sum the requirements and calculate the dimensioning parameters.
The demands on the resources are described in the ‘Dependencies’
section and the resources and formulas are described in the ‘Avail-
able resources’ section together with a description of how to find
out how much of the resource t is currently used. If the resource
that is to be redimensioned can not match the requirements there is
a description or a reference to another document in the ‘Available
resources’ section on how to increase the performance of the
resource. This procedure is done for every dependency that the
module has.

3. The system is now reconfigured so that it can match the require-
ments of the new module. The maiden installation is done as stated
by the maiden installation document and the parameter list.

A module description document

52 of 68 Modular handling of TMOS systems

16.1.4 How to use the document when testing a module
In order to test if a module is correctly installed it is necessary to be able to deter-
mine which functions are important to test and which functions in the system are
not affected by the new module. This is done by looking in the ‘Dependencies’
section of the module description document where all the dependencies of the
modules are described. Since a dependency can affect a resource that is used by
another module it is necessary to look in all the module description documents to
see which other modules are dependent on the resource. The functions in the
module that uses the resource must be tested. The descriptions of the dependen-
cies can indicate if there is a need to test the relation. When all dependencies are
traced and tested, a minimal yet adequate test has been done.

How to write a module description document

Modular handling of TMOS systems 53 of 68

17 How to write a module
description document

In order to ease creation and standardization of the document a number of head-
ings are provided that must be filled with information. In a separate document a
fictitious module description document is presented to give a more concrete
understanding of what a document will look like.

17.1 Short description
A short description of the functionality of the module, what it does and which
services it provides. This description must be kept very short and concise. All
mandatory FABs can be described in one section but the optional FABs should be
described one by one.

A table of which FABs the module contains and if they are optional or mandatory
is placed in this section. References to vital documentation for the FABs could be
included in the table.

This short description will also give beginners an introduction, thus enhancing
understanding of the system.

17.2 Table of dependencies

This is a description of which other modules must be present in the system in
order for the module to function correctly. These dependencies should also be
available in PRIM but it will not be possible to identify which FABs in a module
need to be active. In order to be sure that a module will work correctly, not only
the modules to which it has dependencies must exist, but the FABs in the mod-
ules must be chosen if it is an optional FAB. A dependency table can be made
with a short description of the dependencies.

How to write a module description document

54 of 68 Modular handling of TMOS systems

Figure 15. Sample table of dependencies

The dependencies, (Dep.) in figure 15, indicate if there is an installation depend-
ency an that module (I= Installation dependency, R=Runtime dependency), i.e. if
the module has to be installed prior to the installation of the module. If there is an
I in the Dep. column there exists an installation dependency, exists.

Note that dependencies between modules are very rare. Most modules depend
only on the platform. The table of dependencies will therefore be almost empty
for most modules.

17.3 Dependencies
In this section in the document dependencies are to be described. It is important
to point out that dependencies between modules are very rare, but dependencies
exist to other modules indirectly, since modules share resources in the platform.
This fact does not affect the way dependencies are described (see chapter 12)

There are two different kinds of dependencies. First there is the dependency that
does not require any (almost) performance from the resource. This is by far the
most common kind of dependency. And second there is the dependency that
requires, for instance, database size, CPU power or communication links. The
difference is merely that in the second case one has to describe how the resource
is used in term of load, usage and other requirements while in the first case it is
only relevant to know that the dependency exists, so that the module can be
included in the system without causing undocumented side effects. In order to
avoid the problem with dependencies to optional FABs in modules it is necessary
to specify in which FAB the requested resource is contained.

It is important to be able to find specific dependencies in an easy way, especially
when looking for which modules are dependant of a certain resource. This is

FAB Dependant of In module Dep. Description

FAB_760_000 FAB_760_001 modul_1 I,R uses same database

FAB_760_002 FAB_760_003
or
FAB_760_004
and
FAB_760_005

modul_2
or
modul_3
and
module_4

I

I,R

R

uses their data to cal-
culate results

FAB_760_003 FAB_760_006 module_5 I,R sends messages

How to write a module description document

Modular handling of TMOS systems 55 of 68

done when reconfiguring a resource or when a new module is to be tested. To
simplify the search procedure the dependencies are divided into different catego-
ries e.g. Databases, Services and External communication. In each category the
dependencies should be clearly separated with a short heading with the name of
the resource.

17.3.1 Databases
In this section a description of all the databases that the module uses is made. A
description of what the module does to the database is needed for determining
whether combination of modules is ok, or if the modules affect the database in a
conflicting way. This could for example be if a module changes tables or rela-
tions in the database or if it simply reads or writes data. If the module adds data
to the database it may have to be resized, and formulas for this kind of reconfigu-
ration must be described. The formulas will have some in-parameters such as
number of alarms per hour, number of operators or how many NE are installed.
The out-parameter should be in terms of how many additional Mbytes the data-
base needs. The out-parameters are then used by the formulas in the resource
description to the other module. If the module puts a high load on the database
this should be presented in figures, such as requests per hour in different situa-
tions and average time for each request. If the static and dynamic requirements
on storage for the databases differs this must also be described.

A description of when and why the module uses the individual databases. This
information is included in order to ease the task of spreading the various data-
bases among various servers.

17.3.2 Services
In this section all services that the module uses are described. Services could for
example be fma, imh or communication interfaces. A service could be a request
to another application in order to get information. It could also be a way of giving
other applications a status of some kind. If a request puts a heavy load on the
service server, information on the request rate and time for each request should
be presented. This information could then be used to determine if a service server
has to be reconfigured. Instructions of when and how reconfigurations are made
are described in the section ‘available critical resources’ in the other module’s
module description document. Dependencies are not to be described at process
level. The description should be made at a higher abstract level (see section
12.2).

17.3.3 External communications
If the module communicates with the outside world a description of which proto-
cols and what type of hardware is used is necessary. The configuration of exter-
nal communication is often complicated, so a special description of these is
needed. A description on the influence the module may have on other modules

How to write a module description document

56 of 68 Modular handling of TMOS systems

and their external communication is also needed. This is important information
since some communication protocols can not be installed on the same machine.
Special configuration may be necessary if two different protocols are used in the
same system.

17.3.4 Storage requirements
In order to dimension primary and secondary memory an estimate of how much
of each type of memory is used is necessary. The estimates should be made at
module level and typical usage of the module should be considered. If only parts
of a module can be run simultaneously it can not use as much memory as if all
parts are run. Many instances of programs in a module can be run at the same
time and therefore require a lot of memory. Some parts are run rarely and others
are run often. An estimation of storage requirements is clearly not easy to make,
but some kind of guidelines are needed.

17.3.5 Other performance requirements
If possible the load on other resources such as CPU, network and so on must be
described. Since performance is difficult to estimate and depends on many fac-
tors, examples from a few typical usages of the module can be included to give a
rough description of the performance load.

If more detailed performance models are available parameters for them and refer-
ences to the models must of course be included.

17.3.6 Other dependencies
It is possible that one module reads or writes in a file of another module. This
should be described here at an high abstraction level i.e. not why. An example of
this would be that modules add entries in the loginfiles of the various user pro-
files and these entries can conflict with other entries.

17.4 Engineering data
In this section a description on all the parameters that a module needs in order to
be installed is included. This does not include the parameters that are predefined
by Design (in the parameter list). With this information it is possible to define all
parameters beforehand and then let the installation script take care of the com-
plete installation of the module (see section 16). After starting installation no
more parameters should be set and no files must be edited. This is probably not
possible in reality, but it is a goal to aim for. The contents of this section is actu-
ally the same as in today’s engineering data document. The ‘engineering data’
section should roughly contain the following sections:

How to write a module description document

Modular handling of TMOS systems 57 of 68

- Hardware configuration
A description of how the hardware that belongs to the
module is to be configured.

- Unix configuration
If the module requires special Unix configuration, this
should be described here.

- Patches
Reference to a patch list.

- Module software
A description of which FABs are included in the module,
how to configure them and other information about them.

- Process summary
A list of all the processes that are added to the system by the
module.

17.5 Available critical resources
In this section a description of common critical resources that are available for
other modules to use, is given. If a module wants to use a server-process in a
module and this resource is critical, i.e. if the load on it severely affects its per-
formance, the resource should be described here. Information on the capacity of
the resource, and if it is possible to create more instances or reconfigure the
resource should also be included. The description has to be limited to a minimum
and only indicate a rough estimation of how the resource is affected by other
modules. If it is possible to reconfigure the system to improve performance of the
resource, a description of how to do this should be included here. If the reconfig-
uration is very complex, e.g. a hard-disk has to be added or if one has to upgrade
the system to a two-server configuration, references to further reading are neces-
sary. It is vital that only the resources that are bottlenecks, important or com-
monly used in the system are described, otherwise the list of possible resources
will be endless (and only a few are actually used). A critical resource may be
server-processes, databases or hardware.

17.5.1 Databases
Formulas for dimensioning databases according to the parameters given by the
dependent module are described here. The database size parameters given by the
dependant modules should only be summarized and increased by a safety-factor.
A procedure for determining how much space that is available in a database
should be described or a document describing such procedure should be given as
a reference. If the available space is not enough there is a description of how to

How to write a module description document

58 of 68 Modular handling of TMOS systems

resize a database, or references to other documents describing it should be
included.

If the parameters given by the dependent module indicates that the load on the
database is too high there is a description of how the databases can be divided to
increase performance. How the distribution can be done must also be described,
i.e. splitting the database onto different servers or different disks. Since it is hard
to estimate when the load is too high only guidelines can be given, perhaps by
means of examples.

A description of special demands that a database may have, for instance if a data-
base requires truncating of log at installation or if other special configurations in
the database server are needed.

17.5.2 Services
When describing an available service-resource this should be done at a high
abstract level and not at process level. In some cases the module that uses the
service describes the load with some parameters. Formulas for estimating the
total load on the service should be included here. These formulas are probably
quite hard to design and get relevant results from, but they can give an indication
of the load. In some cases it is sufficient to give a maximum value of how the
module can be loaded, e.g. the service can only support X number of connec-
tions.

If the server-processes that give the service can be reconfigured to manage the
requirements from other modules this should be described. This information
should include which parameters that has to be changed and where to change
them. If the processes can be distributed in order to increase performance this
should also be described.

A procedure for determining how much capacity there is left in a service should
be described. If the description is lengthy, a reference to a document describing
the procedure should be given.

17.5.3 External communication
External communication is often very complex and can cause conflicts when dif-
ferent types of standards are used in the same system. A description of how the
communication is defined should therefore be included in this section.

A procedure to determine how much capacity that is left in communication chan-
nels be given, either by direct description or by indicating to a document describ-
ing the procedure.

Installation

Modular handling of TMOS systems 59 of 68

18 Installation

In order to make the installation procedure more efficient the installation should
be made on modular level instead of as today on CXC level. This chapter is not
an attempt to describe the installation procedure completely. It should instead be
seen as a starting point for discussions.

To make the installation as efficient as possible the number of errors made during
the installation has to be as small as possible. It is thus important to make the
installation as automatic as possible and there must be as little operator interac-
tion as possible.

All parameters should be defined in a file or a database that is common to all
installed modules. All parameters should also be defined only once and they
should have unique names. That way the errors that result from misspelling a
parameter, e.g. severname in one file but not in another will be eliminated. There
will also be no need to edit numerous files. The fact that all parameters are gath-
ered in one file has the advantage that there is only one place to search for possi-
ble errors. It is also easy to see how the whole system is configured just by
looking in the configuration file.

The actual implementation of how to handle the parameters may vary. Either a
plain file could be used or Sybase could be utilised. Sybase is powerful but using
it might be a little bit of an overkill. The central parameter database should be
used as much as possible. The configuration parameters could be put there,
entries in login files and so on. The parameter database should be equipped with
a utility that detects conflicts between the parameters of the various modules.

With all the parameters defined centrally in a database it is easier to design the
installation procedure so that all parameters are entered beforehand and then the
installation is completely automatic, i.e. no parameters should be entered during
the installation phase. This makes installation easier since all parameters can be
set at home and the file can then be brought to the site.

It should not be possible to change parameters that are predefined. In fact those
parameters should not even be seen when installing. This will keep the operator
from inadvertedly changing something that should not be changed.

There should not be any workarounds in the installation procedure of a module.
Workarounds reduce efficiency, are time consuming and cause errors.

Installation

60 of 68 Modular handling of TMOS systems

All modules should be given a default configuration that can be used in most
cases. That way most parameters can be left as is only a few need to be changed.
Installation becomes more efficient and less errors are introduced.

It is important that one person can install a module without detailed knowledge
of the whole system. That way the whole system can be larger since a few people
can be experts on different parts of the system.

It is important that the installation of modules is defined in comprehensive design
rules, to allow error reports to be sent to design, so that they can correct their
errors.

There are some drawbacks to using an automatic installation, for instance if an
error occurs the whole installation prior to the error must be re-run, or if the error
is only reported in a error log the error can cause even more errors later on. This
could be handled by a more sophisticated installation script, but this is costly and
is highly dependent on the software that is to be installed.

How will modules affect documentation?

Modular handling of TMOS systems 61 of 68

19 How will modules affect
documentation?

Here is a survey of the documents that SD may come in contact with. If the doc-
ument is affected by the new modular handling of TMOS a short explanation of
how and why the document is affected must be included. Most documents at
Application Line level will drop down one level to module level. The CXC level
documents will be less important for the SD department as Design will have to
take more responsibility for creating good documentation at higher levels. In
order to be able to reconfigure the system in various ways it is necessary to write
a large number of reconfiguration documents that describe how to change the
parameters that resize the resource. In some cases a more complex description is
needed, e.g. when adding a new server. If the description of parameter changes
can be kept short, it should be included in the module description document and
not in a separate document.

19.1 Appl. line composition

109 21-n/AOM Product Rev Info

Will be written both for modules and parameter lists. There will be a
need to document revisions of both modules and parameter lists.

9/1095-n/AOM “Correction Survey”

2243-n/AOM Question List

131 62-n/AOM Ordering Information

see section 19.4

1531-n/AOM Installation Instr.

This document will only be written at module level.

1532-n/AOM Test Instruction (Installation)

This document will only be written at module level.

1057-n/AOM Engineering Data

How will modules affect documentation?

62 of 68 Modular handling of TMOS systems

This document will only be written at module level. In the report this
document is called ‘Module Description Document’ and is an extension
of the previous Engineering Data Document. The difference is that
dependencies and resources are also described.

n/190 59 n/AOM Parameter List

The parameter list will actually get a more important function in the
world of modules. It will be written for standard configuration systems
and there serve as a new AL concept where a combination of modules
have a standard configuration. It will also be written for each site, but
then just as an update of the system parameter list. In some cases a
special configuration of a system is needed and a unique site specific
parameter list is engineered and written. The parameter list should be
divided into two parts, one with parameters that often has to be changed
and one with parameters that rarely has to be changed. Every module
has its own parameter list that is written by design to fit most applica-
tions. It is from these that the major part of system parameter list is
produced, the rest is engineered by the SD department (parameters that
are dependent on dependencies).

19.2 Appl. unit composition
131 62-FAB Ordering Information

see section 19.4

1/131 62-FAB Ordering Data

see section 19.4

109 41-LZV Document List

19.3 Exec. unit composition

1510-CXC, CXA Manufacturing Instr

190 06-CXC, CXA Generation Info. “Makefile”

109 89-CXC, CXA Container File

109 21-CXC, CXA Product Rev Info

1531-CXC, CXA Installation Instruction

How will modules affect documentation?

Modular handling of TMOS systems 63 of 68

This document does not serve any purpose for the SD department since
installation instructions for modules will be engineered by Design.

155 18-CXC Application Info

This document is not affected by contents but by usage since this docu-
ment will not be used by the SD department when creating Engineering
Data documents. It will probably still be appropriate when doing special
configurations of systems and when tracing errors in the installation.

1545-CXC Fault Tracing Info

This document will be used when looking for faults in a CXC. A fault
tracing document on the module level is also useful.

19.4 Ordering information

The documents that describe which parts of a system can be ordered separately
and which parts must be ordered together will only be needed on one level, the
module level.

The information in the module description document is sufficient to determine
what combination of modules and options within them are allowed. Since few
dependencies between modules exist there will not be a great need for this infor-
mation.

There might, however, be a need for a condensed table of all the dependencies
between modules.

A completely different solution

64 of 68 Modular handling of TMOS systems

20 A completely different
solution

This report gives one solution to the problem presented initially, namely that the
cost of handling TMOS is too high. The solution presented is believed to be the
best but other ways of solving the problem do exist. This chapter gives an intro-
duction to how the problem might be solved in another way.

In this report the solution of the problem with handling TMOS is based on avoid-
ing the problem, i.e. that by foreseeing all possible problems that might occur in
a system problems can be detected and solved by allocating enough resources for
all tasks that must be done. Even if this might be an approach that is fairly simple
to implement, this solution has a number of drawbacks.

One problem is estimating the load on different parts of the system. There are
simply so many factors that need to be taken into account that precise models are
virtually impossible to create. Since the system is so complex, it is also very hard
to predict the behaviour of the system. Another factor that makes is hard to pre-
dict system behaviour is that TMOS is based on UNIX which is inherently diffi-
cult to predict.

There are other solutions that are based on a completely different concept.
Instead of predicting and solving all problems beforehand, problems are detected
when they arise and resolved then. Since this might be the way to go in the
future, this solution will be discussed a little more closely.

All resources keep track of their own load; when the load increases above a cer-
tain value the resource automatically expands itself. For example, if a database is
becoming full or if the load on one processor in a multiserver/multiprocessor
installation becomes too high compared to the rest of processors processes are
automatically migrated to processors with spare capacity. If a resource such as a
communication link is missing, this is reported to the operator so that the
resource can be installed.

When another module is needed in the system that module is simply thrown in
and the rest of the system adapts so that the new module will work. If the module
needs more resources it will tell the operator so. It will probably still be neces-
sary to have some kind of documentation that describes which modules can be
installed separately and which modules need other modules in order to avoid
embarrassing situations when one comes to a site to install a module, only to find
that the new module depends on another module that one of course did not pack.
It is also possible to set warnings so that the system warns that a resource is close

A completely different solution

Modular handling of TMOS systems 65 of 68

to running out and it may be time to get more of that resource, for example disk
or CPU power. The main point is that there will be no need to predict how the
system is going to put load on the resources and therefore no need to dimension
the resources. And thus there will be no need for documentation describing this.

There will, however be a need for mechanisms for automatically moving
resources around in the system. These mechanisms can also be utilized to create
high availability solutions. Consider a system with four servers with all resources
doubled. If one server fails this will be detected and those resources that resided
on that server will be duplicated from their still working copies and spread
around in the system. The system will still function but on only three servers.
When the faulty server is replaced or if one wants to add another server to a three
server configuration, that server is simply hooked up, the system detects it and
processes and databases are automatically migrated to the new server. The con-
clusion is that since there is a need for a mechanism for moving resources
around, that mechanism can be used to add resources while the system is run-
ning.

The main drawback is that this is hard to implement. To move processes around
transparently, support for this is probably needed in the operating system. The
database server must also have support to move databases around while the sys-
tem is running. The database system used today does not support this. There are
also many parts of TMOS that need to be redesigned.

There is also some overhead created when monitoring the various resources. This
might not be a serious problem since hardware is relatively cheap and all that has
to be done is to add extra hardware to give enough power to handle the overhead.

Another problem is that the system becomes even more indeterministic than it is
today. It is not easy to handle the system today, but at least the processes and
databases stay on the same machine. If they are allowed to move around it will be
more difficult to determine how machines are going to perform and conducting
tests will also be more difficult.

In conclusion this is a solution that can result in greatly simplified handling but it
requires a considerable amount of redesign at high cost.

Conclusions

66 of 68 Modular handling of TMOS systems

21 Conclusions

The problem when handling TMOS today is the time the various activities take.
One time-consuming task is the generation of a new AL from the FABs. Another
task that takes considerable time is the creation of a customer-specific system
that can not be derived from an AL. Testing the system is also time-consuming,
since there are no methods to determine which parts of the system affect each
other.

To solve the problem with handling, modules are created. Modules should be
about the size of three to seven FABs. This results in a reasonable compromise
between flexibility in a system and the number of modules that have to be han-
dled. The functions in a module should be related to each other, enabling practi-
cally all dependencies between modules to be avoided. As modules grow there
might be a logical gap between the functions in the module. The module should
then be split in two.

All dependencies between modules are described using resources. This makes it
possible to describe two types of dependencies. One type occurs when two mod-
ules depend on the same resource. The other type occurs when one module is
dependent on a resource in another module. If all resources are described, all
problems can be detected, but this necessitates a great amount of documentation.
By describing only bottlenecks, not describing obvious resources and by adjust-
ing the size of the various resources, the amount of documentation can be
reduced while almost all problems can still be detected.

Options are allowed in modules, but the interface of the module is kept constant.
This means that even if an option is not selected, resources for it are allocated.
Options are distributed and installed together with the module, but to be able to
use it a key has to be given. This way pricing will be simplified since handling
and price are less related than today. It will also be easier to sell upgrades. The
way options are handled imposes certain restrictions on options. An option may
not depend on another module and it should be possible to install a module even
if an option depends on hardware that is not present.

In order to handle the modules efficiently a module description document is cre-
ated. This document is described in detail. The document is divided into five sec-
tions.

- Short description: A short description of the module.

- Table of dependencies: A short description of what the module is dependent on.

Conclusions

Modular handling of TMOS systems 67 of 68

- Dependencies: Describes which resources the module is dependent on.

- Engineering data: Describes parameters that can be used to configure the mod-
ule.

- Available critical resources: Describes the resources that the module provides.

This module description document then replaces today’s engineering data docu-
ment.

The module description document can also be used to reconfigure resources (e.g.
databases or server processes) when the load on them is increased. If the recon-
figuration of a resource is very complicated a separate document has to be writ-
ten to describe the procedures.

To simplify handling even more the platform is preconfigured. The platform may
not then need to be changed when a module is added to a system, since all the
resources that are required may already be correctly configured.

The result of the engineering process is a parameter list. The engineering work is
done when a system that consists of a specific combination of modules is created
for the first time. When another system that consists of the same combination of
modules is created again there is no need to do all the engineering again since the
parameter list can be used. It does not matter, however, if the options in the mod-
ules are present or not, which gives the parameter list some flexibility. This
parameter list replaces the AL of today. Most systems can then be derived from
these parameter lists. It is only in special cases that the engineering will need to
be done again.

Modules are preconfigured by the Design departments. Installation can the be
simplified in most cases because it is not necessary to change parameters. The
installation of a module should be complete, i.e. no additional configuration of
the whole system has to be done once the module is installed.

Modular handling puts restrictions and demands on modules, options, the plat-
form, the installation procedure and documentation. Some restrictions must be
met in order to make the model function correctly, while others result in simpler
handling if they are met.

The advantages modules are that engineering, handling, installation and testing is
simplified. Engineering will be simplified because there is no need to search
through many documents to find the relevant information and there is no need to
go through the whole system to add a module. Because the system consists of a
few modules the number of documents will be kept low. Handling will be simpli-
fied because there is no need to generate a complete AL. Installation is simplified
because all parameters are defined beforehand and only once. Testing is simpli-

Conclusions

68 of 68 Modular handling of TMOS systems

fied because it is possible to predict what parts of a system need to be tested
when a new module is added. It is also easier to create new revisions to add func-
tionality or correct errors because it is not the whole AL that has to be changed,
but only one module.

The drawback with modular handling are that since more flexibility is created
certain tasks, such as configuration of a new system, may be more complicated
than they are today. These problems can, however, be handled with standard con-
figurations of a system. Another problem that may arise is that the document
describing the module may be hard to create because it is written by people not
have an overview of the system and because formulas for dimensioning
resources may be hard to create.

The complexity of the TMOS system and its many configuration possibilities
makes it hard to the system to modular handling. A great effort has to be made to
simplify the structure of TMOS, perhaps by reducing the number of parameters
that can be set and making FABs and modules even more atomic.

Page 1 of 8

Diary from the thesis project
This is a description of the different activities that we have done during the
project. It is in roughly chronological order.

1.0 The introduction
After some introductory phone calls we were finally able to begin the project. We
started out with some introductory meetings with different people that had inter-
ests in the project. Everyone gave their opinion about what had to be done and
everybody we talked to said that ‘this is really interesting, but it is difficult’. And
everyone gave us the impression that there were really big problems that had to be
solved.

The first thing we had to do when we first encountered TMOS was to learn more
about the system. In order to do this we read all kinds of documents, mostly the
ones describing the whole system. Reading documents would then follow us dur-
ing the whole project. There are not many documents describing the whole sys-
tem, but since those documents averaged around one hundred pages each we had
more than enough to do.

Since fiddling with documents were going to be one of our main tasks we also had
our firs contact with PRIM. PRIM is the system for handling documents in the
Ericsson world. It is probably a very powerful tool, but it is not userfriendly. Our
first impression was not improved by the fact that PRIM is only a tool for finding
documents and that another tool is required to retrieve the documents.

In order to get some hands on experience we spent one afternoon at the support
group playing around with one of their TMOS systems. It was an XM system, and
those does not have that many different menus, nice little icons and buttons to
push. In fact a normal word processor can do many more things, at least that was
what it felt like. We went home with a feeling of that this was going to be easy. We
also felt a confused, what was the problem really?

2.0 Digging into the problem
Another task that is part of the standard introduction to TMOS is installing a sys-
tem. We were assigned a couple of old computers that nobody used. These two old
(at least a year) computers were ours to use for our project and we begun the
installation. In the beginning we had trouble with the console terminal and the lit-
tle nifty editor vi. We also had problems with our hard disks and though we refor-
mated them they would not work. Not until a service technichan from Sun came
we were able to solve the problem.

When we were halfway through the installation somebody came by and asked
why we were using that old document revision. It turned out that the revision of
the installation description that we were using was rather old and we changed the
revision of the installation description. In fact one of the big problems that we had
during the whole installation was to get the right revisions of documents, software
and hardware. Our troubles with revisions might have caused some of the errors
we encountered later.

Diary from the thesis project

Page 2 of 8

We were able to complete the installation thanks to all the helpful people around
us. But when we had done it turned out that not much of the system were up and
running. A rough estimate is that about half of the system worked. In the begin-
ning we blamed the external communication. Since our computers were not con-
nected to the outside world we thought that if some parts of the system could not
communicate that would create some kind of snowball effect that would cause
other processes to fail. Thus it would be perfectly normal to have only about half
the system start. We spent one happy day in that dream. Then somebody told us
that we should be able to get the whole system up even if we did not have any con-
nection with the outside world. Then we spent two days trying to locate the bugs.
But after two days we gave up and found another worthwhile task to do.

Since we thought that we were going to study the dependencies within TMOS that
was where we started. We did this by studying the individual installation docu-
ments for each CXC. A CXC is a small building block that consists of one or
many processes. Anyway in the installation document there is a chapter where
information on which CXCs that has to be installed and running in order for this
CXC to be installed and run correctly. We managed to find a list of all the CXCs
that is included in a XM system and by using the installation manuals at the
department in combination with PRIM we managed to get information about how
all the different CXCs were dependent upon each other. We decided to draw a map
of those dependencies and ended up with a huge map that sure looked complex.
We were happy since this really seemed like a complex matter. We had found our
problem.

But when we grouped the different CXCs into FABs and grouped all the CXCs in
the platform together there were not many dependencies left. When we discarded
all the CXCs that belonged to CMAS there were only four different dependencies
left. But that seemed like a good result, there were not as many dependencies as
expected so grouping of the different FABs could be done without too much effort.
We left a note on our instructors white-board telling him that our job was done and
left for the weekend. We didn’t know at the time that we were on the wrong track.
We wouldn’t find that out until weeks later.

The next week we talked to our instructor and discussed what we were going to do
next. Together we decided that we were going to study the dependencies between
the CXCs better. What did they consist of really, what was the cause of the
dependency. We went hunting for information through the building. We found
interworking descriptions, but the information they gave was too detailed and not
really suited for our needs. Other documents we studied gave too much and too
detailed information while other gave little or none information that we could use.
We also talked to a couple of people and that led us to Mr. Jonas Udén. He had
done something similar to what we had done about two years ago and he seemed
to be the ideal person to talk to.

We met Mr. Udén one morning and he told us a few thing that we already knew,
namely that there is no written information anywhere that describes the dependen-

Diary from the thesis project

Page 3 of 8

cies among the various CXCs. Mr. Udén had mapped the processes and the
dependencies among them. When he had done research he had had to talk to the
various programmers and talk to them about how the processes were connected.
When we left he gave us a copy of his documents and we thought that we had
found a gem. We went back and started putting together all his maps into one big
map describing the complete system. When we grouped the CXCs together into
FABs we found almost, but only almost the same dependencies that we had found
when using installation documents. There were many different factors that could
account for these differences. The map was old and the dependencies described in
the installation documents might be of another type or the person who wrote the
document might have included a couple of extra CXCs, better safe than sorry. It is
also possible that we made a few mistakes along the way.

We knew we were on the right track and so we decided to try to put together a tem-
plate for describing the various dependencies in the system. What level were we
going to put the description on. After long discussions we decided to put the
description on CXC level. That was done because we wanted to be able to trace
the dependencies back to CXCs and with the process map one should be able to
trace the individual dependencies back to individual processes. We put together a
template and distributed it to a few persons to get some feedback. To get the
answers back we had to wait for a while. The people at Ericsson are busy.

3.0 Adding other tasks to the project
It was during this period of temporary hold in the project that we found out that we
needed something else to do so we were given another assignment that we could
fiddle around with in our spare time. When the handling of a TMOS system
becomes easier it will be easier to expand a system. Then methods will be needed
and our task was to develop such methods and tools if there was a need for them.
We were even allowed to write our own specification. Our instructor was really
busy at the time and spent most of his time meeting with other people, so he did
not have time to think about his diploma workers.

In order to be able to develop methods for expanding TMOS systems we needed a
working system to experiment on so we went back to our system and tried to get it
to work. It was really a basic system and it was supposed to be easy to handle, at
least compared to the other TMOS systems that were around. But we were out of
luck. When we had spent two days trying to find the error we gave up and decided
to try again from the beginning. Fortunately we had a tape that contained the plat-
form, so we would not have to go back to the very beginning. We made the instal-
lation and after trying to shake the bugs out of that installation we concluded that
it was probably some errors in our first installation of the platform too.

After some discussion we did the whole installation again from the beginning and
managed to get the system up and running. Of course we had some problems this
time too. One of the things that played us a little trick was the installation of the
authority database. After waiting for a couple of hours we decided that something

Diary from the thesis project

Page 4 of 8

must have gone wrong, so we stopped and asked what we had done wrong. It
turned out that nothing was wrong. Installing the authority database takes about
eight hours on our slow machines. But finally were ready take care of the migra-
tion of databases.

Reactions on our suggestion about interface description started to come in and we
soon saw that we had chosen the wrong level. A description on FAB level was
obviously what people wanted. But we got a lot of constructive feedback so we
were able to do some serious revising of our document template. We also saw the
need for documentation on FAB level. Partly because there are not many descrip-
tions on FAB level and with the size of the document that we had proposed it
would be unrealistic to write on for each FAB. We were happy, we had finally
found our problem, we were making progress and satisfied with life we gave the
document to our instructor and went home for the weekend.

We had a meeting with our instructor the next Monday. He was not entirely satis-
fied with what we had done. He did not want a description of the dependencies in
a TMOS system. No ! He wanted something that would ease handling for their
department. We were lost, we had lost our problem. Or rather we had solved the
wrong one. We had been on the wrong track for more than a month and now the
track ended.

4.0 Starting again with a different approach
We went back to our office. Yes one of our colleagues had left for vacation and he
lent us his office. We sat and discussed back and forth and forth and back. After a
couple of days we could se that there might be a point in that there is a need for
larger handling unit than FAB. We ran into a lot of problems but finally we found
a solution that might be viable. Then we rewrote our document and added sections
about modules and the handling of those.

We gave our instructor the new revised copy and asked him to read it and then we
dug into our second task of migrating databases. One thing that had to be done was
to add a disk to an existing system and then migrate the databases onto that disk. It
wasn’t really a problem, we had the disk and everything we had to do was to hook
it up to our system and then we would be on our way. Anyhow anybody that has
worked with computers knows that nothing that seems simple, really is simple.
We needed expert assistance, or at least someone who could point us in the right
direction. So we went roaming through the house. We were lucky since if was Fri-
day afternoon at about 4 pm and the guy we needed to talk to would leave for
vacation the next week. He was not as happy as we were, but he gave us a hand
and finally we got our disk to work.

We spent time on going through the various ways to move a database server and
made progress. Although we made a mistake now and then and then we had to
restore our server from backup tapes. That is easy to do, but the problem is that it
takes a couple of hours to do and mistakes are often made early in the day. So we

Diary from the thesis project

Page 5 of 8

spent some hours drinking coffee and discussing the inns and outs of the world in
general. But despite these problems we were able to finish the four different meth-
ods and write an instruction for how to migrate databases onto another disk. The
next task would be to add one server to a oneserver system. We started to install a
second machine and install a databasesever on that machine.

But things happened that we had no control over. Olav caught a cold Tuesday
before midsummer and didn’t return until the next week. While he spent his time
in bed with tea and honey Henrik continued with the second databaseserver and he
also had a meeting with our instructor. Our instructor told him that we were on the
right track but we still needed to connect what we were doing with the rest of the
Ericsson world. We should also describe the dependencies more closely. Henrik
left to celebrate midsummer in Gotland. While he was there he fell off a rauk and
sprained his ankle.

Limping and coughing they returned to work on monday morning and we started
digging in to the problem on how to describe dependencies. We spent Monday and
Tuesday thinking. Thinking meant sitting in our room and discussing and drawing
on the white-boards. At times there would be hectic writing on the board and loud
discussions and at time we would just sit there and think. Unfortunately it was
only on those occasions that people would walk by and look in. They must have
thought that these two guys does nothing productive, what are they doing here.
Anyhow the rest of the week we spent writing more documents and revise the ear-
lier documentation. Our bump test of the our documents started to give good
results too. A bump test is simple to conduct. One just drops the document on a
table and if it makes a pang it is good. The louder the pang the better the documen-
tation.

One of our problems was how we were goung to fit our work into the rest of the
TMOS system, were we going to create a new ABC class or could we use an exist-
ing one. Or would it be so terrible that one ABC class had to discarded. To under-
stand the problem one has to know about ABC classes. ABC classes is what keeps
the Ericsson bureaucracy going. It is a way to classify everything that Ericsson
does. Two things are produced: documents and products. Both of them has their
own way to number things, and those two things are related in some magical way.
The numbers are mystical themselves with lots of slashes numbers and letters.
There is a theory that this way of numbering things is created just to keep com-
pany secrets and guarantee that only the best may be employed. Those who cannot
understand the numbering system are not fit to working at Ericsson.There is a sim-
ple spell to find out how things are related: PRIM. Unfortunately the results of this
spell is a little bit unpredictable. Anyhow ABC classes has kept Ericsson going for
more than half a century and they will probably remain until the final day. If we
were going to create a new ABC class that would cause disturbances around the
world and the decision would probably take years to make. So without even con-
sidering other alternatives we decided to let our document replace the engineering
data document.

Diary from the thesis project

Page 6 of 8

The rest of the week was spent writing down the results of our discussions. During
the writing process we discussed those issues that obviously were not clear
enough to put in writing. Writing down ones thought is a good way to really find
out what one is thinking. Especially if ones thoughts are unclear. We wrote differ-
ent sections each and then checked and edited each others sections. One thing that
we found out was that there were other entirely different solutions to the problem.
Not the problem that we were told to solve, but the problem that Ericsson had. The
problem really was how to bring the cost of handling TMOS down, but we were
told to find a way of dividing the system into modules. But we found out that there
were other ways of keeping the cost of handling TMOS down. Unfortunately that
would require redesign of the whole system. Anyhow by Friday afternoon we
thought that our document was fairly complete and the bump test gave good
results too, so we gave our instructor the document and wished him a happy week-
end.

5.0 Job for experts done by novices?
Monday morning we went back to our project with expanding an already existing
system. The task of adding another server seemed fairly simple. Just connect the
server physically, install UNIX and the database server, move the databases and
change a few parameters in the system. The next morning we were completely out
of ideas and our whole thesis work came to a temporary halt. Installing UNIX and
the database server was straightforward and did not cause any serious problems.
Migrating the database was also simple, at least we knew how to do it. Then
changing parameters in the system was the big problem. After searching through
the whole filesystem for the string “SEOMC1”. We changed all occurrences to
SEOMC2 and hoped that it would work. It wouldn’t and after looking through the
whole filesystem a couple of times we decided that it is not only the SEOMC1 that
has to be changed but also the hostname probably had to be changed in a few
places. After a couple of fruitless tries we gave up and turned our attention
towards more interesting (?) tasks. Obviously moving databases is a job for those
who has worked with TMOS a long time and who knows all the inner and outer
working of every little tiny file.

6.0 Are we getting close to the end?
That week we had two meetings with our instructor. On Monday he hadn’t had
time to read the whole thing so he didn’t say much, and that fooled us. We thought
that this was it. We were almost done. But on Thursday he had had time to read
our report and our dreams of a happy vacation until the end of August just sailed
away. He told us that we were heading in the right direction, but we still had to do
some more thinking. He believed in our theories, but they were still too abstract.
What were Ericsson going to use them for, how could they be used and which
effects would that have. We tried to point out that in chapter so and so there was a
short description on how to use the document, but that was not enough obviously.
Our instructor was going to leave for vacation the next week so we had to come up
with something to do the next couple of weeks. Our instructor told us that it would
be a good idea to have the report completed the eight of august, because then there

Diary from the thesis project

Page 7 of 8

would be some kind of meeting in project seagull and they really would need our
ideas. At least that is what he told us.

We spent the rest of the week fixing our report and late Friday afternoon we gave
the report to Kjell Andersson from the PY department so that he could give us his
opinion too. An then we left for vacation too. We only had one week and one day,
but we really needed that rest.

7.0 Working but tired
We got back on tuesday. Vacation had been good, but we didn’t have too much
sleep so we were a little bit tired when we returned. Our first task was to find Kjell
Andersson and discuss our report with him. He had read our report. Unfortunately
the introduction reveals that we are novices in the TMOS world, so Kjell probably
read the beginning and then browsed through the rest thinking something about
ignorant students. He didn’t say much about what he thought, either he had no
opinion or he kept quiet. But he pointed out that we had to place the whole thing
into it’s context. We had heard that before, and he gave us the name of another guy
that had worked on the problem before. We left after a while and got back to our
office.

We continued fixing our report up by adding an introduction and a conclusion. We
also tried to expand the chapter on how to write the module description document.

We talked to the next guy in the chain, Rune Tedin. He was a friendly and spoke-
some guy that talked a lot about structuring of TMOS and different approaches
that has be thought of. He gave us a couple of good ideas and what was more
important was that he thought that our ideas was good and that they might be usa-
ble. He also told us that there had been work done concerning the same thing in
the AXE world. And like everybody else he gave us another person to contact.

It started to dawn at us that this project had no end. It is possible to dig in and dig
deeper and deeper and deeper for many years, and there will still be another
approach to consider and always another person to talk to who has done some-
thing similar. The never ending project...

We were not very effective that week. But we spent the rest of the week doing
what we always had done. Thinking and writing. And we started to feel the panic,
things had to be done in time, and we started to get really fed up with the whole
thing. But fortunately it was time for another week of rest and recuperation. The
weather was probably going to be fine so we left Ericsson happy as clams.

8.0 End of the report and the beginning of the
presentation
When Henrik returned from vacation on Monday the eight of August he continued
writing the general parts of TMOS, intended for Chalmers and those who do not

Diary from the thesis project

Page 8 of 8

understand TMOS. (Who does?) Thursday Olav returned and we had a meeting
with Niklas and talked about our report. Finally it seemed like we were heading in
the right general direction. Niklas only gave us a few more things that we had to
update. So we spent the remains of that week updating the report. What was really
important to find out was how big a module should be. There are many factors
influencing the size of a module. Unfortunately we didn’t know exactly how much
each factor contributed to the cost of handling a module. So we guessed in a more
or less orderly fashion. The result was a neat diagram that looked really scientific.
We could probably have developed advanced formulas as well, but since this is a
serious place we refrained from doing that.

Henrik left for another sailing trip. This time with the big ship Havila. Olav stayed
behind and did more work. One chapter had to be completely rewritten, the one
about modules and how those were to be created. There were a couple of other
things that still had to be corrected. He also spent some time reading the entire
report once again. There were a few more errors and a few more things that
required clarification. Will that report ever get done?

Olav also started to do all the administration that is required in order to get the
diploma thesis accepted. It is not easy, and since the system at school is com-
pletely new no one knows anything. But at least he managed to find somewhere to
be and a good time for the presentation.

Olav talked to Niklas about that, and Niklas said. - “Interesting” and ”when can
you do the presentation here. I’d like you two to do it as soon as possible. Yester-
day would be absolutely best.” So Olav sat down to start preparing for the presen-
tation. Writing slides is fairly quick so by the end of Friday he had a
comparatively finished draft. Poor Henrik had no idea of what was waiting for him
when would get back.

Chalmers wanted a report and we didn’t want to give them one of the Ericsson
reports. Although Ericsson have comparatively efficient reports they are ugly. So
the best part of Friday was spent battling with FrameMaker to make the document
template look as we waned it to look. Unfortunately Framemaker did not have the
same opinion as we did, but we won.

9.0 The end
Henrik got back on Monday and we did the finishing touches on the report. And
that included finishing the diary. And because the report had to be finished the
diary had to end too.

What happened then is that everybody was happy and lived long ever after. TMOS
conquered the world and Henrik and Olav became highly paid employees of Eric-
sson. And as far as I know they are still writing TMOS documentation...

